Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn DNA Rückgrat zeigt – Entstehung UV-induzierter DNA-Dewar-Schäden aufgeklärt

28.11.2011
Ultraviolette (UV) Anteile im Sonnenlicht können zu Schädigungen der Haut bis hin zum Hautkrebs führen.

Grund dafür sind gefährliche DNA-Mutationen, die zur Folge haben, dass die Erbinformation nicht mehr oder nicht mehr korrekt abgelesen werden kann. Eine mögliche Mutation ist der sogenannte Dewar-Schaden, der selbst wieder erbgutverändernde Schäden auslöst – eine Aufklärung der Mechanismen, die zur Dewar-Bildung führen ist also von großem Interesse.

LMU-Wissenschaftler konnten nun nachweisen, dass das DNA-Rückgrat dabei eine entscheidende Rolle spielt: Erst ein intaktes Rückgrat macht die Mutation möglich – ist das Rückgrat offen und damit flexibel, kann die Reaktion nicht ablaufen. Damit zeigt sich eine überraschende Doppelrolle des Rückgrats: Einerseits ist es die Grundvoraussetzung für die Funktion der DNA und somit von fundamentaler Bedeutung für alle lebenden Organismen. Andererseits ist es die Ursache für den Dewar-Schaden und trägt dadurch zur UV- induzierten Mutagenese bei. (Angewandte Chemie, 23. November 2011)

UV-induzierte DNA-Schäden entstehen durch molekulare Veränderungen, die zu Strukturänderungen führen und Mutationen oder sogar den Zelltod einleiten können. Zunächst erzeugt die energiereiche UV-Strahlung hauptsächlich zwei Arten von Mutationen: sogenannte CPD-Schäden und (6-4)-Photoschäden. Beide entstehen, indem benachbarte DNA-Bausteine eine Verbindung eingehen. Aus dem (6-4)-Schaden kann bei fortgesetzter Aufnahme von UV-Strahlung eine weitere Strukturänderung erfolgen. Auf diese Weise entsteht ein sogenannter Dewar-Schaden, der bei kontinuierlicher Sonnenbestrahlung ein stabiles Endprodukt darstellt - und hochmutagen ist, also selbst wieder erbgutverändernde Schäden auslöst. „Während die Entstehung der CPD- und (6-4)- Schäden bereits gut untersucht ist, traf dies für die Dewar-Schäden bisher nicht zu“, sagt der LMU-Chemiker Professor Thomas Carell, der auch dem Exzellenzcluster „Center for Integrated Protein Science Munich“ (CIPSM) angehört.

In einem gemeinsamen Projekt im Rahmen des SFB749 konnte Carells Gruppe nun zusammen mit Teams um den LMU-Physiker Professor Wolfgang Zinth (CIPSM) und Regina de Vivie-Riedle vom Department Chemie zeigen, dass das DNA-Rückgrat eine entscheidende Rolle spielt. Das Rückgrat besteht aus sich regelmäßig abwechselnden Zucker- und Phosphat-Molekülen, die den Protein-codierenden DNA-Bausteinen Halt geben. „Zu unserer Überraschung stellte sich heraus, dass der Dewar-Schaden nur dann eintritt, wenn ein intaktes Rückgrat den betroffenen DNA-Bereich stützt“, erklärt Carell, „weder die chemisch identische Substanz mit offenem Rückgrat, noch die freien Basenpaare zeigen die Dewar-Bildung bei Bestrahlung mit Sonnenlicht.“ Die interdisziplinäre Zusammenarbeit der drei Arbeitsgruppen aus den Bereichen Chemie, Physik und Theorie ermöglichte es, die photochemische Dewar-Bildung erstmals auf atomarer Ebene direkt zu verfolgen. „Dabei zeigten unsere Ergebnisse, dass die Dewar-Bildung bemerkenswert effektiv ist und zu einer der effizientesten lichtinduzierten Reaktionen der DNA gehört“, erläutert der Physiker Zinth.

Einblicke in die mechanistischen Details der photochemischen Dewar-Bildung kamen aus der Theorie. „Um die Photochemie auf hohem Niveau verfolgen zu können, haben wir eine neue Hybridmethode konzipiert, mit der wir die Dynamik in zusammengesetzten Molekülbereichen auf unterschiedlich hohem quantenmechanischem Niveau verfolgen können“, sagt de Vivie-Riedle. Basierend auf ihren Berechnungen konnten die Wissenschaftler eindeutig klären, welche Rolle das DNA-Rückgrat für die Dewar-Bildung spielt: Ein offenes Rückgrat macht die Moleküle flexibel – dieser Zustand erlaubt nach einem (6-4)-Schaden nur den photophysikalischen Rückweg zum Ausgangsprodukt. Ein intaktes Rückgrat dagegen macht das Molekül starr: Die Ringspannung unterdrückt die Flexibilität, nur die Atome der neu zu bildenden Dewar-Bindung bleiben beweglich. Damit ist der Weg zum Dewar-Schaden frei.

Die Arbeiten wurden von der DFG im Rahmen des Sonderforschungsbereichs (SFB) 749 „Dynamik und Intermediate molekularer Transformationen“ und des Exzellenzclusters "Center for Integrated Protein Science Munich" (CIPSM) gefördert. Regina de Vivie-Riedle und Wolfgang Zinth sind auch Mitglied des Exzellenzclusters „Munich Centre of Advanced Photonics“ (MAP). (göd)

Publikation:

„Mechanism of UV-Induced DNA Dewar-Lesion Formation”:
Karin Haiser, Benjamin P. Fingerhut, Korbinian Heil, Andreas Glas, Teja T. Herzog, Bert M. Pilles, Wolfgang J. Schreier, Wolfgang Zinth, Regina de Vivie-Riedle, Thomas Carell;
Angewandte Chemie. Article first published online: 23. Nov. 2011;
DOI: 10.1002/ang.201106231
Ansprechpartner:
Prof. Dr. Thomas Carell
Department Chemie
Tel.: 089 / 2180 – 77755
Fax: 089 / 2180 – 77756
http://www.carellgroup.de/
Prof. Dr. Regina de Vivie-Riedle
Department Chemie
Tel.: 089 / 2180 – 77533
Fax: 089 / 2180 – 77133
http://www.cup.uni-muenchen.de/pc/devivie/
Prof. Wolfgang Zinth
Fakultät für Physik
Tel.: 089 / 2180 – 9201
Fax: 089 / 2180 – 9202
http://www.bmo.physik.uni-muenchen.de/~zinth/

Luise Dirscherl | Ludwig-Maximilians-Universität M
Weitere Informationen:
http://www.uni-muenchen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise