Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

DNA-Origami: Aufbau von Strukturen in Virengröße und Kostensenkung durch Massenproduktion

07.12.2017

Die Doppelstränge unserer Gene machen sie so stabil. Mit einer DNA-Origami genannten Technik baut Biophysiker Hendrik Dietz an der Technischen Universität München (TUM) seit einigen Jahren nanometergroße Objekte. Nun ist es Dietz und seinem Team gelungen, nicht nur die Nanometer-Grenze zu überwinden und größere Objekte zu bauen, sondern auch die Herstellungskosten durch Massenproduktion um einen Faktor 1000 zu reduzieren. Diese Innovationen eröffnen der Technologie neue Horizonte.

Viren schließen ihre Erbsubstanz in eine Kapsel ein, die aus vielen gleichen Proteinbausteinen besteht. Die Kapsel des Hepatitis-B-Virus beispielsweise besteht aus 180 identischen Untereinheiten, ein typisches Beispiel für die auch von der Natur gerne genutzte „Fertigteil-Bauweise“.


Mit DNA-Origami-Techniken aufgebaute, V-förmige Bausteine bilden durch Selbstorganisation „Zahnräder“. In einem nächsten Schritt bilden diese Röhren, deren Größe die von Virus-Capsiden erreicht.

Hendrik Dietz / TU


DNA-Origami-Objekte zusammengesetzt aus V-förmigen Untereinheiten. Bildausschnitt: „Nano-Zahnrad“, aufgenommen mit einem Titan Krios G2 300 kV Cryo-Elektronenmikroskop.

Hendrik Dietz / TUM

Das Team von Hendrik Dietz, Professor für Biomolekulare Nanotechnologie an der TU München, hat nun virale Konstruktionsprinzipien in die DNA-Origami-Technologie übertragen. Damit sind sie nun in der Lage, Strukturen von der Größe von Viren und Zellorganellen gezielt zu konstruieren und aufzubauen.

Grundlage der Technologie ist ein langer Einzelstrang, der durch kurze Gegenstücke zu einer doppelsträngigen Struktur ergänzt wird. „Die doppelsträngige Struktur ist energetisch so stabil, dass wir den Einzelstrang durch geschickt gewählte kurze Gegenstücke fast in beliebige Formen zwingen können“, erläutert Hendrik Dietz. „Mittlerweile können wir damit am Computer präzise Objekte konstruieren, die nur wenige Nanometer groß sind.“

Zahnräder für den Nanomotor

Mittlerweile beherrscht die Arbeitsgruppe auch Techniken, die Objekte durch hinzugefügte Seitengruppen weiter zu modifizieren. Doch die Größe der Objekte blieb auf die Nanometerskala beschränkt. In ihrer im renommierten Fachjournal „Nature“ erschienenen Publikation zeigen sie nun, wie man aus Fertigbauteilen größere Strukturen aufbauen kann.

Dazu schufen sie zunächst Nanoobjekte in V-Form. Diese bekamen an den Seiten form-komplementäre Bindungsstellen, so dass sie sich in der Lösung schwimmend von selbst zusammenfügten. Je nach Öffnungswinkel entstanden so „Zahnräder“ aus zehn bis 28 Einzelelementen.

„Zu unserer großen Freude entstehen fast ausschließlich die durch den Öffnungswinkel der Einzelelemente vorgegebenen Ringe“, sagt Hendrik Dietz. „Entscheidend dafür, dass wir überhaupt so groß und komplex bauen können, sind die Präzision und die Steifigkeit der einzelnen Bausteine. Die Einzelelemente mussten wir beispielsweise mit Querstreben versteifen.“

Aufbau von Mikroröhrchen

Um das Strukturprinzip weiter auszureizen schuf das Team neue Moleküle, die nicht nur „Klebestellen“ an der Seite, sondern zusätzlich etwas schwächere Verbindungsstellen auf Ober- und Unterseite besitzen. Nun setzen sich die „Nanozahnräder“ in einem zweiten Schritt über die zusätzlichen Bindungsstellen zu langen Röhrchen zusammen.

„Mit Längen von einem Mikrometer und Durchmessern von mehreren Hundert Nanometern erreichen diese Röhrchen bereits die Größe von Stäbchenbakterien“, erläutert Hendrik Dietz. „Und über die Architektur der Einzelbausteine können wir die Gesamtstruktur präzise bestimmen.“

Aufbau polyedrischer Strukturen

Inspiriert von den Symmetrien und dem hierarchischen Aufbau von Viren, versuchten die Forscher auch Käfigstrukturen aufzubauen. „Eine mögliche zukünftige Anwendung künstlicher Käfige könnte der Transport von Medikamenten im Körper sein“, erläutert Hendrik Dietz die Motivation. „Das Ziel dabei ist, die Wirkstoffe ausschließlich am Einsatzort freizusetzen und den restlichen Körper zu schonen.“

Nach den bereits bei den vorherigen Strukturen angewandten Prinzipien konstruierte das Team nun Bauteile, die sich unter den richtigen Bedingungen zu Käfigstrukturen zusammenfügen sollten. Aus einem dreieckigen Mittelstück und drei V-förmigen Bausteinen entsteht so wieder ein dreiarmiges Bauteil.

Je nach Öffnungswinkel des V fügen sich mehrere davon im zweiten Schritt zu tetraedrischen, hexaedrischen oder dodekaedrischen Strukturen zusammen. Diese Strukturen integrieren dabei bis zu 1.8 Millionen addressierbare DNA Basenpaare an definierten Positionen. Die Käfige erreichen damit erstmals die Größe von Viren und kleinen Zellorganellen.

Kostengünstige Massenproduktion

Bisher beschränken die Herstellungsverfahren die Einsatzmöglichkeiten auf Felder, bei denen nur geringe Mengen benötigt werden. Das mit den derzeit gängigen Methoden nur wenige Mikrogramm hergestellt werden können, schließt denkbare Anwendungen in der Medizin oder in der Materialwissenschaft völlig aus.

Das Nadelöhr sind dabei die kurzen Klammerstränge, die aufwändig Base für Base chemisch aufgebaut werden müssen. Der aus Bakteriophagen gewonnene Hauptstrang dagegen kann einfach und in großen Mengen biotechnologisch produziert werden.

Das Team um Hendrik Dietz entwickelte daher eine aus der synthetischen Biotechnologie stammende Entdeckung weiter, sogenannte DNA-Enzyme. Dies sind DNA-Stücke, die bei einer hohen Konzentration von Zink-Ionen an bestimmten Stellen auseinanderbrechen.

Die kurzen Klammer-Sequenzen verbanden sie mit jeweils zwei modifizierten DNA-Enzymen zu einem langen Strang. „Wie der Einzelstrang einer Bakteriophagen-DNA lässt sich ein solcher Strang, einmal präzise mit der richtigen Basenfolge hergestellt, mit biotechnologischen Verfahren vervielfältigen“, erläutert Dietz den Trick des Verfahrens.

Biotechnologische Produktion im großen Maßstab

Die Herstellung sowohl des Hauptstrangs als auch des aus DNA-Enzymen und Klammer-Sequenzen bestehenden zweiten Strangs gelang in einem Hochzelldichte-Verfahren mit Bakterien. Da dieses skalierbar ist, sind Hauptstrang und Klammern auch in großen Mengen produzierbar. Erhöht man nach Isolierung der DNA die Konzentration an Zink-Ionen, werden die kurzen Klammerstränge freigesetzt und können den Hauptstrang in die gewünschte Form falten.

Umfangreiche reaktionstechnische Untersuchungen zusammen mit Kollegen am Lehrstuhl für Bioverfahrenstechnik zeigten, dass dies auch in großem Volumen möglich ist. Im Technikum für Weiße Biotechnologie der TU München in Garching konnten die Wissenschaftler so bereits Grammmengen von vier verschiedenen DNA-Origami-Objekten herstellen. Auch die weitere Skalierbarkeit in den Kubikmeter-Maßstab erscheint nun möglich.

„Im Zusammenspiel von Biotechnologie und Verfahrenstechnik ist damit ein wirklich grundlegender Meilenstein auf dem Weg für zukünftige Anwendungen der DNA-Nanotechnologie gelungen“, sagt Mitautor Professor Dirk Weuster-Botz, Inhaber des Lehrstuhls für Bioverfahrenstechnik.

Die Arbeiten wurden unterstützt mit Mitteln des European Research Council, der Deutschen Forschungsgemeinschaft (DFG) aus dem Gottfried-Wilhelm-Leibniz Programm, dem SFB 863, den Exzellenzclustern Center for Integrated Protein Science Munich (CIPSM) und Nanosystems Initiative Munich (NIM), der International Graduate School of Science and Engineering, dem aus Mitteln der DFG und der Europäischen Gemeinschaft geförderten Institute for Advanced Study der Technischen Universität München, des BioOrigami-Projekts des Bundesministeriums für Bildung und Forschung (BMBF) und der Bosch Forschungsstiftung.

Publikationen

Klaus F. Wagenbauer, Christian Sigl und Hendrik Dietz
Gigadalton-scale shape-programmable DNA assemblies
Nature, 07.12.2017 – 10.1038/nature24651

Florian Praetorius, Benjamin Kick, Karl L. Behler, Maximilian N. Honemann, Dirk Weuster-Botz und Hendrik Dietz
Biotechnological mass production of DNA origami
Nature, 07.12.2017 – DOI: 10.1038/nature24650

Weitere Informationen

Biophysiker konstruieren komplexe Hybridstrukturen aus DNA und Proteinen:
https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/detail/article/33812/

Forscher messen erstmals direkt die Stapelkraft in DNA-Doppelhelix:
https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/detail/article/33369/

Nanorotor und -greifer bringen DNA-Origami einen großen Schritt weiter:
https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/32983/

Ein Werkzeugkasten für den Bau beweglicher DNA-Nanomaschinen
https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/32303/

Präzise und robuste Nanofabrikation mit Erbgutmolekülen:
https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/detail/article/30254/

Eine synthetische Nanopore imitiert den Transport von Substanzen durch Zellmembranen:
https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/detail/article/30215/

ERC-Grant für Hendrik Dietz:
https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/33637/

Biophysiker Hendrik Dietz wird vierter Leibniz-Preisträger in der TUM-Physik:
https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/32026/

Kontakt

Prof. Dr. Hendrik DietzTechnische Universität München
Laboratory for Biomolecular Nanotechnology
James-Franck-Str. 1, 85748 Garching, Germany
Tel.: +49 89 289 11615 – E-Mail: dietz@tum.de

Weitere Informationen

https://www.dietzlab.org/ Homepage der Arbeitsgruppe
https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/34360/ Pressemeldung auf der Homepage der TUM
https://mediatum.ub.tum.de/1419469 Bildmaterial

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Multifunktionaler Mikroschwimmer transportiert Fracht und zerstört sich selbst
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

nachricht Der lange Irrweg der ADP Ribosylierung
26.04.2018 | Max-Planck-Institut für Biologie des Alterns

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Konferenz »Encoding Cultures. Leben mit intelligenten Maschinen« | 27. & 28.04.2018 ZKM | Karlsruhe

26.04.2018 | Veranstaltungen

Konferenz zur Marktentwicklung von Gigabitnetzen in Deutschland

26.04.2018 | Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltrekord an der Uni Paderborn: Optische Datenübertragung mit 128 Gigabits pro Sekunde

26.04.2018 | Informationstechnologie

Multifunktionaler Mikroschwimmer transportiert Fracht und zerstört sich selbst

26.04.2018 | Biowissenschaften Chemie

Berner Mars-Kamera liefert erste farbige Bilder vom Mars

26.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics