Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

DNA: nicht nur gut als Erbgut

15.01.2016

Das „Kerngeschäft“ der DNA ist zweifelsohne, unsere genetische Information zu codieren und zu speichern. Doch sie kann noch mehr: Ebenso wie viele Proteine und RNAs kann auch DNA wie ein Enzym chemische Reaktionen katalysieren.

Göttinger Forscher um Claudia Höbartner und Vlad Pena haben nun erstmals die räumliche Struktur eines DNA-Enzyms im atomaren Detail sichtbar gemacht. Sie erbringen damit den Beweis, dass sich auch DNA zu komplexen dreidimensionalen Formen faltet, um katalytisch aktiv zu sein.


Die erste dreidimensionale Struktur eines DNA-Enzyms. Das Desoxyribozym (blau) hat zwei RNA-Stränge (orange) miteinander verknüpft.

Höbartner und Pena / Max-Planck-Institut für biophysikalische Chemie

Die neuen Erkenntnisse lösen ein langjähriges Rätsel der Nukleinsäure-Chemie und sind ein wichtiger Schritt, um DNA-Enzyme besser zu verstehen und als Werkzeuge nutzbar zu machen.

Anders als katalytische Proteine und RNAs hat man DNA-Enzyme, auch Desoxyribozyme genannt, bisher in lebenden Zellen nicht gefunden. Wissenschaftler stellen diese künstlich her, indem sie eine Vielzahl einzelner DNA-Stränge produzieren und anschließend jene herausfiltern, die enzymatisch aktiv sind, also chemische Reaktionen katalysieren.

Die Desoxyribozyme können dann als Werkzeuge in der Forschung dienen. Sie werden beispielsweise dafür eingesetzt, RNA-Moleküle an einer definierten Stelle zu schneiden oder zwei RNAs miteinander zu verknüpfen. Außerdem hofft man, sie auch in der Medizin nutzen zu können, um etwa an Krankheiten beteiligte Gene gezielt auszuschalten.

„Um wirksame Desoxyribozyme für einen bestimmten Zweck zu optimieren, müssen wir zunächst mehr darüber lernen, wie sie im Detail funktionieren“, erläutert Claudia Höbartner, Leiterin der Gruppe Nukleinsäurechemie am Göttinger Max-Planck-Institut für biophysikalische Chemie und Professorin am Institut für Organische und Biomolekulare Chemie an der Universität Göttingen.

„Dafür ist es nötig zu verstehen, welche dreidimensionale Struktur der DNA-Strang einnimmt und wie es der DNA gelingt, unter den vielen möglichen Stellen in der RNA genau eine einzige für die Reaktion auszuwählen.“

Eine solche Desoxyribozym-Struktur zu ermitteln versuchen Forscher, seit DNA-Enzyme vor mehr als 20 Jahren entdeckt wurden. Dem Team um Claudia Höbartner und Vlad Pena ist jetzt der Durchbruch gelungen: Sie haben die räumliche Struktur eines Desoxyribozyms mit atomarer Genauigkeit analysiert und damit detaillierte Einblicke in dessen Funktionsweise gewonnen – ein Meilenstein in der Forschung an Nukleinsäure-Enzymen.

Desoxyribozyme falten sich wie Proteine und RNA-Enzyme

Das untersuchte DNA Enzym katalysiert das Ausbilden einer natürlichen chemischen Bindung zwischen zwei RNA-Molekülen, die dadurch zu einem einzigen RNA-Strang verschmelzen. Die Struktur der Göttinger Chemiker zeigt das Desoxyribozym am Ende dieser Reaktion.

„Wie wir sehen konnten, hat sich der DNA-Strang zu einer kompakten Einheit zusammengefaltet. Dadurch kommen bestimmte Bauteile der DNA an einem Punkt mit den Enden der RNA-Stränge zusammen und bilden ein Zentrum, in dem die chemische Reaktion abläuft“, erklärt Vlad Pena, der am MPI für biophysikalische Chemie die Forschungsgruppe Makromolekulare Kristallografie leitet.

Mit der ersten dreidimensionalen Struktur eines Desoxyribozyms zeigen die Göttinger Wissenschaftler jetzt, was lange vermutet, bisher aber nicht belegt werden konnte: DNA-Enzyme nehmen, ebenso wie enzymatische RNAs und Proteine, eine definierte dreidimensionale Struktur ein, um ihre katalytische Aufgabe zu erfüllen. „Daraus ergibt sich die spannende Frage, ob komplexere DNA-Strukturen nicht auch in der Natur eine Rolle spielen könnten, ähnlich wie wir es bisher nur von RNAs und Proteinen kennen“, so Pena.

Die gewonnenen Erkenntnisse der Forscher sind auch hilfreich, um den genauen Ablauf der Reaktion zu verstehen und DNA-Enzyme als Werkzeuge zu verbessern: Dank der neuen Informationen konnten sie das DNA-Enzym so modifizieren, dass es seine „Vorliebe“ für bestimmte RNAs änderte.

Des Weiteren lösten die Chemiker mit der ersten Struktur eines Desoxyribozyms ein Rätsel, das Wissenschaftler beschäftigt hat, seit man von katalytisch aktiven DNA-Molekülen weiß: Die verwandten RNA-Enzyme sind besonders gute Katalysatoren, weil sie an jedem einzelnen DNA-Baustein eine zusätzliche sogenannte Hydroxylgruppe besitzen, die für die Struktur der RNA-Enzyme und für die Katalyse der Reaktionen eine wichtige Rolle spielt. Diese zusätzliche Hydroxylgruppe fehlt der DNA.

Wie also schaffen es Desoxyribozyme, Reaktionen ähnlich gut zu katalysieren wie die chemisch doch viel besser ausgestatteten RNA-Enzyme? „Die Struktur des Desoxyribozyms zeigt, dass die fehlende Hydroxylgruppe für die DNA kein Nachteil ist“, berichtet Almudena Ponce-Salvatierra, Erstautorin der Arbeit. „Ihre Abwesenheit macht den DNA-Strang nämlich viel flexibler. Er kann sich daher zu ganz anderen Formen zusammenfalten, als es einem RNA-Strang möglich wäre. Dadurch hat ein Desoxyribozym noch mehr Möglichkeiten, seine chemischen Bausteine so zusammenzubringen, dass sie Reaktionen katalysieren können.“

In Zukunft will Max-Planck-Forscherin Höbartner noch mehr über diese besonderen Nukleinsäure-Moleküle herausfinden: „Wir werden versuchen, ein Desoxyribozym nicht nur nach, sondern vor oder während der chemischen Reaktion ‚einzufrieren‘ und seine Struktur zu analysieren. Diese würde uns noch mehr Details über den Mechanismus verraten, mit dem das Enzym seine Reaktion katalysiert.“ (fk)

Original-Veröffentlichung:
Almudena Ponce-Salvatierra, Katarzyna Wawrzyniak-Turek, Ulrich Steuerwald, Claudia Höbartner, Vladimir Pena: Crystal structure of a DNA catalyst. Nature 529, 231-234 (2016).

Kontakt:
Prof. Dr. Claudia Höbartner, Gastgruppe Nukleinsäurechemie
Max-Planck-Institut für biophysikalische Chemie, Göttingen, und
Institut für Organische und Biomolekulare Chemie, Universität Göttingen
Tel.: +49 551 201-1685, +49 551 39-20906
E-Mail: claudia.hoebartner@mpibpc.mpg.de

Dr. Vlad Pena, Forschungsgruppe Makromolekulare Kristallografie
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201-1197
E-Mail: vpena@gwdg.de

Dr. Frederik Köpper, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201-1310
E-Mail: frederik.koepper@mpibpc.mpg.de

Weitere Informationen:

http://www.mpibpc.mpg.de/15196506/pr_1601 – Originalpressemitteilung des Max-Planck-Instituts für biophysikalische Chemie, Göttingen
http://www.mpibpc.mpg.de/de/hoebartner – Webseite der Gastgruppe Nukleinsäurechemie am
http://Max-Planck-Institut für biophysikalische Chemie
http://www.mpibpc.mpg.de/de/pena – Webseite der Forschungsgruppe Makromolekulare Kristallografie am Max-Planck-Institut für biophysikalische Chemie

Dr. Carmen Rotte | Max-Planck-Institut für biophysikalische Chemie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Schalter umlegen, Tumorentwicklung stoppen
22.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Tröpfchen für Tröpfchen
22.06.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

Die Zukunft der Informationstechnologie - Internationale Konferenz erstmals in Aachen

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

22.06.2017 | Geowissenschaften

Wie Protonen durch eine Brennstoffzelle wandern

22.06.2017 | Energie und Elektrotechnik

Tröpfchen für Tröpfchen

22.06.2017 | Biowissenschaften Chemie