Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

DNA in Glas

17.02.2015

Dauerhafte Informationsspeicherung in DNA ist möglich

Proben von Mammuts, Höhlenbären, etc. zeigen es: Sequenzierfähige DNA kann Zehn- bis Hunderttausende von Jahren alt sein. Dass die Speicherung von DNA nicht nur auf Fossilien in Permafrost beschränkt ist, sondern auch in Glas in der Art eines "fossilen Knochens" funktioniert, dokumentieren Robert N. Grass und Kollegen von der ETH Zürich in ihrer Zuschrift in der Zeitschrift Angewandte Chemie.


Die Speicherung von DNA ist in Glas in der Art eines "fossilen Knochens" möglich

(c) Wiley-VCH

Seit einigen Jahren gibt es Ansätze, die "Sprache" von DNA zu nutzen, um digitale Informationen darin zu codieren und zu speichern. "Diese Ansätze können jedoch mit Fehlern nicht effizient umgehen und sind daher nicht zuverlässig", erläutern Grass und Kollegen. "Außerdem benennen diese Ansätze keine (physikalische) Speicherform, um DNA dauerhaft stabil zu halten".

Daher kombinierten die Forscher ein korrekturfähiges Codierungsschema mit der Einbettung von informationstragenden DNA-Stücken in eine Siliciumdioxidmatrix. Die somit verkapselte DNA ließ sich durch einfachen Fluoridaufschluss wieder extrahieren, sequenzieren und fehlerkorrigiert decodieren. "Die Experimente zeigen, dass nur durch eine Kombination dieser beiden Verfahren digitale Information aus DNA wiedererhalten kann, die unter den Bedingungen des weltweiten Saatgut-Tresors (bei -18 °C) mehr als 1 Million Jahre aufbewahrt wird", erläutern die Forscher

Um die unterschiedlichen Bedingungen zu simulieren, verglichen die Wissenschaftler verschiedene Aufbewahrungsformen miteinander: Die codierte DNA lag entweder getrocknet, auf Filterpapier aufgetragen, in eine Polymermatrix eingebettet oder in Siliciumdioxidglas verkapselt vor.

Über vier Wochen hinweg setzten sie diese Proben verschiedenen Temperaturen und unterschiedlicher Luftfeuchtigkeit aus und prüften im Anschluss die Integrität der DNA. Extrapoliert auf tiefe Temperaturen (wie zum Beispiel im Permafrost vorhanden) bewies die Glasverkapselung die deutlich beste Integrität. Nach diesen Experimenten wäre es über simulierte 1 Million Jahre möglich, die in der DNA gespeicherte Information fehlerfrei wieder auszulesen.

Die Wissenschaftler wählten als Anwendungsbeispiel zwei historische Texte aus, zum Einen den Schweizer Bundesbrief von 1291, zum Anderen die englische Übersetzung des antiken Palimpsest von Archimedes über die Grundzüge der Integralrechnung. Die Buchstaben des Texts (oder, wie die Autoren betonen, auch allgemein zwei Bytes einer digitalen Datei) wurden immer paarweise in Dreierelemente übertragen und diese dann in 158 Nukleotide lange DNA-Sequenzen überführt.

Außer der codierten Originalinformation enthalten die somit synthetisierten DNA-Sequenzen Indexeinträge und Redundanzelemente für die effektive Fehlerkorrektur nach dem Reed-Solomon-Verfahren. Die Natur speichert Erbinformation für die Evolution der Lebewesen. Die Menschen speichern Informationen, um Wissen weiterzugeben. Über Zeiträume von Millionen von Jahren hinweg kann das in der Form von DNA durchaus sinnvoll sein.

Angewandte Chemie: Presseinfo 04/2015

Autor: Robert N. Grass, ETH Zürich (Switzerland), http://www.fml.ethz.ch/the-lab/people/lecturer.html

Permalink to the original article: http://dx.doi.org/10.1002/ange.201411378

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.

Weitere Informationen:

http://presse.angewandte.de

Dr. Renate Hoer | GDCh

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Basis für neue medikamentöse Therapie bei Demenz
27.07.2017 | Medizinische Hochschule Hannover

nachricht Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse
27.07.2017 | Westfälische Wilhelms-Universität Münster

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Basis für neue medikamentöse Therapie bei Demenz

27.07.2017 | Biowissenschaften Chemie

Aus Potenzial Erfolge machen: 30 Rittaler schließen Nachqualifizierung erfolgreich ab

27.07.2017 | Unternehmensmeldung

Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse

27.07.2017 | Biowissenschaften Chemie