Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

DNA Analysis of Microbes in a Fracking Site Yields Surprises

04.12.2012
Researchers have made a genetic analysis of the microbes living deep inside a deposit of Marcellus Shale at a hydraulic fracturing, or “fracking,” site, and uncovered some surprises.

They expected to find many tough microbes suited to extreme environments, such as those that derive from archaea, a domain of single-celled species sometimes found in high-salt environments, volcanoes, or hot springs. Instead, they found very few genetic biomarkers for archaea, and many more for species that derive from bacteria.

They also found that the populations of microbes changed dramatically over a short period of time, as some species perished during the fracking operation and others became more abundant. One—an as-yet-unidentified bacterium—actually prospered, and eventually made up 90 percent of the microbial population in fluids taken from the fracked well.

Researchers may never know the exact species of bacteria in the fluids because of the difficulty in replicating the subsurface conditions in the laboratory, and the challenges associated with culturing unknown microbes from such environments, explained Paula Mouser, assistant professor of civil, environmental and geodetic engineering at Ohio State University and lead author of the study.

“There are millions of microbes that we can detect using biomarkers, but haven’t ever isolated or cultured from these environments before. Most are grouped into loose associations based on shared genetic characteristics—something akin to a human extended family,” Mouser said.

“Probably, the best we’ll be able to do is identify their microbial ‘cousins.’”

The study tracked the microbe species found in the water pumped out of a typical fracking site over a period of months during its normal operation. The rock at the site was a type of shale known as Marcellus, named for the city in New York where it was first identified.

To Mouser, the real value of the study is the new knowledge it offers on how microbes in fracking fluids compete and survive when the fluids are injected to the deep subsurface, as certain microbes could prove detrimental to oil and gas quality, or compromise well integrity.

She presented her team’s initial findings at the American Geophysical Union meeting this week.

“This kind of research is important, because everything we learn about subsurface microorganisms helps us understand ecology on Earth’s surface,” she said. “When water samples like this are shared, there is the potential for great discovery—this knowledge could open doors to new technology for improving gas extraction efficiency or for treating flowback fluids from these sites.”

Because of the large cost for drilling and fracking one well—usually, millions of dollars—individual researchers must team together with industry for access to samples.

In fact, companies do not normally share the contents of their “flowback” fluids—the mix of water, oil, and gas that emerges from an active well—because they could reveal the proprietary mix of chemicals that the company is using to aid extraction.

The Ohio State study was able to take place only through a collaboration with the U.S. Department of Energy National Energy Technology Laboratory (NETL) in Pittsburgh. NETL is working with industry to study fracking technologies and provided Mouser’s team with water samples donated by an unnamed shale gas operation.

When it comes to energy extraction, tiny microbes play a huge role, Mouser said.

As it happens, the chemicals that companies pump into the ground along with water to help fracture shale and release petroleum contain carbon, nitrogen, and phosphorous—in chemical formulations that microbes like to eat. So, left unchecked, the microbes in a fracking well can grow and reproduce out of control—so much so, that they may clog the fractures and block extraction, or foul the gas and oil with their waste, which contains sulfur.

This is no news to oil companies, Mouser added. They’ve long known about the microbes, and add biocides to the water to control the population. What isn’t known: exactly what kinds of microbes live there, and what altering their populations does to the environment.

“Our goal is really to understand the physiology of the microbes and their biogeochemical role in the environment, to examine how industry practices influence subsurface microbial life and water quality,” Mouser said.

Maryam Ansari, a master’s student in environmental sciences at Ohio State, sequenced the microbes’ DNA, and separated them into taxa, or taxonomic units—groups that could be thought of as microbial “cousins.”

Of the 40 taxa the researchers identified from water samples taken at the start of the fracking operation, only six survived the first few weeks. Almost all of the bacteria at the site were classified as “halo-tolerant,” similar to bacteria that live in deep saltwater environments.

The study is just beginning, and Mouser hopes that as they learn more, the researchers will be able to pin down how the microbes metabolize fracking fluids.

Ultimately, they hope to meld those discoveries with a computer model that can predict fluid movement from shale formations to groundwater aquifers. The model would provide tools for commercial companies to assess the safety of possible fracking sites.

In the meantime, Mouser is very interested in teaming with other industry partners to also look at microbial dynamics in a different kind of rock: Ohio’s Utica Shale.

Ohio State’s Subsurface Energy Resource Center funded the genomic analyses, which were done at the university’s Plant Microbe Genetics Facility. These early findings have earned Mouser a new grant from the National Science Foundation so that she can pursue the work further.

Contact: Paula Mouser, (614) 247-4429; Mouser.19@osu.edu

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Editor’s note: to reach Mouser during the American Geophysical Union meeting, contact Pam Frost Gorder.

Pam Frost Gorder | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Great apes communicate cooperatively
25.05.2016 | Max-Planck-Institut für Ornithologie

nachricht Rice study decodes genetic circuitry for bacterial spore formation
24.05.2016 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational High-Throughput-Screening findet neue Hartmagnete die weniger Seltene Erden enthalten

Für Zukunftstechnologien wie Elektromobilität und erneuerbare Energien ist der Einsatz von starken Dauermagneten von großer Bedeutung. Für deren Herstellung werden Seltene Erden benötigt. Dem Fraunhofer-Institut für Werkstoffmechanik IWM in Freiburg ist es nun gelungen, mit einem selbst entwickelten Simulationsverfahren auf Basis eines High-Throughput-Screening (HTS) vielversprechende Materialansätze für neue Dauermagnete zu identifizieren. Das Team verbesserte damit die magnetischen Eigenschaften und ersetzte gleichzeitig Seltene Erden durch Elemente, die weniger teuer und zuverlässig verfügbar sind. Die Ergebnisse wurden im Online-Fachmagazin »Scientific Reports« publiziert.

Ausgangspunkt des Projekts der IWM-Forscher Wolfgang Körner, Georg Krugel und Christian Elsässer war eine Neodym-Eisen-Stickstoff-Verbindung, die auf einem...

Im Focus: University of Queensland: In weniger als 2 Stunden ans andere Ende der Welt reisen

Ein internationales Forschungsteam, darunter Wissenschaftler der University of Queensland, hat im Süden Australiens einen erfolgreichen Hyperschallgeschwindigkeitstestflug absolviert und damit futuristische Reisemöglichkeiten greifbarer gemacht.

Flugreisen von London nach Sydney in unter zwei Stunden werden, dank des HiFiRE Programms, immer realistischer. Im Rahmen dieses Projekts werden in den...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Mit atomarer Präzision: Technologien für die übernächste Chipgeneration

Im Projekt »Beyond EUV« entwickeln die Fraunhofer-Institute für Lasertechnik ILT in Aachen und für angewandte Optik und Feinmechanik IOF in Jena wesentliche Technologien zur Fertigung einer neuen Generation von Mikrochips mit EUV-Strahlung bei 6,7 nm. Die Strukturen sind dann kaum noch dicker als einzelne Atome und ermöglichen besonders hoch integrierte Schaltkreise zum Beispiel für Wearables oder gedankengesteuerte Prothesen.

Gordon Moore formulierte 1965 das später nach ihm benannte Gesetz, wonach sich alle ein bis zwei Jahre die Komplexität integrierter Schaltungen verdoppelt. Er...

Im Focus: Ein negatives Enzym liefert positive Resultate

In den letzten zwanzig Jahren hat die Chemie viele wichtige Instrumente und Verfahren für die Biologie hervorgebracht. Heute können wir Proteine herstellen, die in der Natur bisher nicht vorkommen. Es lassen sich Bilder von Ausschnitten lebender Zellen aufnehmen und sogar einzelne Zellen in lebendigen Tieren beobachten. Diese Woche haben zwei Forschungsgruppen der Universitäten Basel und Genf, die beide dem Nationalen Forschungsschwerpunkt Molecular Systems Engineering angehören, im Forschungsmagazin «ACS Central Science» präsentiert, wie man ein nicht-natürliches Protein designt, das völlig neue Fähigkeiten aufweist.

Proteine sind die Arbeitspferde jeder Zelle. Sie bestehen aus Aminosäurebausteinen, die als Kette verbunden sind, welche sich zu funktionalen Maschinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juli 2016

25.05.2016 | Veranstaltungen

"European Conference on Modelling and Simulation" an der OTH Regensburg

25.05.2016 | Veranstaltungen

Fachtagung »Magnetwerkstoffe und Seltene Erden«

25.05.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Thermooptische Messanlagen könnten Millionen Tonnen CO2 in Kohlekraftwerken einsparen

25.05.2016 | Energie und Elektrotechnik

Computational High-Throughput-Screening findet neue Hartmagnete die weniger Seltene Erden enthalten

25.05.2016 | Materialwissenschaften

University of Queensland: In weniger als 2 Stunden ans andere Ende der Welt reisen

25.05.2016 | Physik Astronomie