Direkte Beobachtung der Bindung von Kohlenmonoxid

Physiker um Professor Johannes Barth von der Technischen Universität München (TUM) haben in Zusammenarbeit mit Theoretikern in Lyon und Barcelona Bindungsmechanismen für Gasmoleküle anEisen- oder Kobalt-Porphyrinen aufgeklärt. In der aktuellen Ausgabe von Nature Chemistry berichten sie über die von ihnen gefundenen, unerwarteten Phänomene und zeigen erste Aufnahmen.

Die reversible Bindung von Sauerstoff und Kohlendioxid an Metalloporphyrinen ist ein zentraler Prozess bei der Atmung von Wirbeltieren. Auch für die Katalyse oder für den Bau chemischer Sensoren ist es wichtig zu verstehen, wie kleine Gasmoleküle an komplexierte Metallzentren chemisch binden. Zur Untersuchung dieser Bindungsprinzipen benutzten die Wissenschaftler Porphyrinmoleküle, in deren Mitte jeweils ein Kobalt- oder Eisenatom eingebaut ist. Mit diesen beschichteten sie eine metallische Trägerfläche aus Kupfer oder Silber.

Eine wichtige Eigenschaft der Porphyrine ist ihre strukturelle Flexibilität. Jüngere Arbeiten zeigten, dass jede spezielle geometrische Konfiguration die Funktionalität der Metallo-Porphyrine empfindlich beeinflussen kann. Entsprechend dem derzeitigen Kenntnisstand der Forschung erwarteten die Wissenschaftler,dass sich im Fall von Kohlenmonoxid jeweils nur ein CO-Molekül axial an ein zentrales Metallatom binden würde. Tatsächlich zeigten jedoch die detaillierten Rastertunnelmikroskopie-Experimente von Knud Seufert, dass sich zwei Gasmoleküle zwischen dem zentralen Metallatom und zwei gegenüberliegendenStickstoffatomen anlagern. Entscheidend ist dabei eine Sattelform der Porphyrinmoleküle, wobei die beiden Gasmoleküle die Position des Reiters einnehmen.

Die zentrale Bedeutung der Sattelgeometrie zeigte sich auch in Modellrechnungen von Marie-Laure Bocquet von der Universität Lyon. Ihre Analyse half den Forschern, den neuartigen Bindungsmodus im Detail zu verstehen. Außerdem zeigte sie, dass die Form des molekularen Sattels auch nach der Bindung der beiden Gasmoleküle nahezu unverändert erhalten bleibt.

Ganz anders dagegen reagierten die Porphyrine, als die Wissenschaftler das Kohlenmonoxid durch stärker bindendes Stickstoffmonoxid ersetzten. Dieses bindet wie erwartet direkt am zentralen Metallatom, wobei nur eines an jedes Porphyrin passt. Die elektronische Struktur des Trägermoleküls wird dabei stark verändert und der charakteristische Sattel verflacht. Somit unterscheidet sich die Reaktion des Porphyrins auf unterschiedliche Gassorten drastisch – ein Befund, der auch für potentielle Anwendungen wie Sensoren von Interesse ist.

Dr. Willi Auwärter, einer der Autoren, ist begeistert: „Neu ist an unserem Ergebnis, dass wir eben diesen Mechanismus das erste Mal auf molekularer Ebene wirklich gesehen haben. Wir können sogar ganz gezielt einzelne Gasmoleküle von einem Porphyrinring auf einen anderen durch molekulare Manipulation umsetzen.“ Das Team hat sich zum Ziel gesetzt, die physikalischen und chemischen Prozesse an Oberflächen und Nanostrukturen aufzuklären.

Nachdem ihnen diese grundlegenden Einblicke gelungen sind, stellen sich die nächsten Fragen: Wie groß ist der Einfluss des Zentralatoms? Wie werden sich die Bindungen ändern, wenn das Ausgangsmolekül nicht verformt ist? Wie kann man mit solchen Systemen den Ladungstransfer an Grenzflächen steuern?

Die Arbeiten wurden insbesondere unterstützt aus Mitteln der Deutschen Forschungsgemeinschaft (Exzellenzcluster Munich Center for Advanced Photonics (MAP)), des TUM-Instiute for Advanced Study, des European Research Councils (ERC Advanced Grant MolArt), sowie des spanischen Ministerio de Ciencia e Innovacion. Das Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften unterstützte die Arbeiten durch Bereitstellung von Rechenzeit. Professor Barth ist Mitglied im Zentralinstitut für Katalyseforschung (CRC) der TUM.

Originalpublikation:

Cis-dicarbonyl binding at cobalt and iron porphyrins with saddle-shape conformation, Knud Seufert, Marie-Laure Bocquet, Willi Auwärter, Alexander Weber-Bargioni, Joachim Reichert, Nicolás Lorente undJohannes V. Barth, Nature Chemistry, Online 9. Januar 2011 – DOI: 10.1038/NCHEM.956

http://www.nature.com/nchem/journal/vaop/ncurrent/full/nchem.956.html

Weitere Publikation zu diesem Thema:

Discriminative response of surface-confined metalloporphyrin molecules to carbon and nitrogen monoxide, Knud Seufert, Willi Auwärter und Johannes V. Barth, Journal of the American Chemical Society, 2010, 132, 18141–18146 – DOI: 10.1021/ja1054884

Link: http://pubs.acs.org/doi/abs/10.1021/ja1054884

Kontakt:

Prof. Dr. Johannes V. Barth
Technische Universität München
Physik-Department (E20)
James Franck Straße 1
85748 Garching, Germany
Tel: +49 89 289 12608
Fax: +49 89 289 12338
E-Mail: jvb@ph.tum.de
Die Technische Universität München (TUM) ist mit rund 460 Professorinnen und Professoren, 7.500 Mitarbeiterinnen und Mitarbeitern (einschließlich Klinikum rechts der Isar) und rund 26.000 Studierenden eine der führenden Universitäten Deutschlands. Ihre Schwerpunktfelder sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften, Medizin und Wirtschaftswissenschaften. Nach zahlreichen Auszeichnungen wurde sie 2006 vom Wissenschaftsrat und der Deutschen Forschungsgemeinschaft zur Exzellenzuniversität gewählt. Das weltweite Netzwerk der TUM umfasst auch eine Dependance in Singapur. Die TUM ist dem Leitbild einer unternehmerischen Universität verpflichtet.

Media Contact

Dr. Andreas Battenberg Technische Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer