Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Direct Fuel“: Erst Propan, dann Kraftstoff

01.10.2010
Freiburger Wissenschaftler entwickeln Prozess zur direkten Herstellung von Propan

Die Albert-Ludwigs-Universität Freiburg beteiligt sich an dem am 1. Oktober 2010 beginnenden neuen europäischen Forschungsprojekt "Direct biological conversion of solar energy to volatile hydrocarbon fuels by engineered cyanobacteria" ("DirectFuel").

Der Projektleiter des im 7. Eu-Forschungsrahmenprogramm geförderten Projektes ist Prof. Dr. Wolfgang Hess, Leiter der Abteilung für Genetik an der Fakultät für Biologie der Universität Freiburg. Die Koordination erfolgt durch die Universität Turku, Finnland. Das 9-Partner-Projekt ist auf eine Zeitspanne von vier Jahren ausgelegt und wird mit maximal 3.729.519 Euro gefördert.

Mit dem „DirectFuel“-Projekt soll ein photobiologischer Prozess zur direkten Herstellung von Propan, einem farblosen, brennbaren Gas, entwickelt werden. Biologische Energiewandlungsprozesse sind prinzipiell in besonderer Weise geeignet, die Arten von Kohlenwasserstoffen zu generieren, auf denen die gegenwärtige Transportwirtschaft beruht. Die in der Natur vorhandenen Möglichkeiten für die Umwandlung sind jedoch begrenzt. Hauptziel des „DirectFuel“-Projekts ist es deshalb, neue metabolische Synthesewege zu konstruieren, die die gewünschten Eigenschaften besitzen. Propan wurde als Leitverbindung ausgewählt, da es bei Raumtemperatur unter normalem Druck gasförmig ist, jedoch mit nur geringem Druck leicht verflüssigt werden kann. Daher kann es als Produkt, das für die Herstellung von Kraftstoff geeignet, ist ohne direkten Eingriff in den biologischen Produktionsprozess "geerntet" werden.

Auf alle sonst mit der Gewinnung von Biokraftstoffen verbundenen Extraktionsschritte kann verzichtet werden. Es kann jedoch trotzdem leicht und direkt in einen hochverdichteten Zustand überführt werden. Propan wird seit mehr als einem halben Jahrhundert als Transportkraftstoff verwendet. In vielen Staaten der EU existiert bereits eine Infrastruktur für die Distribution von Propan als Flüssiggas. In Deutschland gibt es zum Beispiel schon heute mehr als 5.000 Tankstellen, die Flüssiggas anbieten. Der Prozess ist hocheffizient und zur direkten Anwendung geeignet. Er zeichnet sich zudem durch eine hohe Verträglichkeit mit der vorhandenen Lager- und Verteilungsinfrastruktur aus.

Kontakt:
Wolfgang Hess
Institut für Biologie III
Tel.: 0761/203-2796
Fax: 0761/203-2745
E-Mail: wolfgang.hess@biologie.uni-freiburg.de

Rudolf-Werner Dreier | idw
Weitere Informationen:
http://www.cyanolab.de/index
http://www.directfuel.eu

Weitere Berichte zu: Chemische Biologie Flüssiggas Fuel cells Kraftstoff Propan Prozess

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie