Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die digitale Sprache des Gehirns

20.05.2011
Mit einem einfachen an der Universität Tübingen entwickelten Modell lassen sich bisher rätselhafte Aktivitäten von Nervenpopulationen nachbilden.

Die universelle Sprache des Gehirns besteht aus elektrischen Impulsen, sogenannten Spikes. Jeder einzelne der Millionen Nerven im menschlichen Gehirn kann zu jedem Zeitpunkt entweder einen Spike aussenden oder ruhig bleiben. Das Gehirn repräsentiert also Informationen über die Welt ganz ähnlich wie ein Computer in einem binären Code, null oder eins, Spike oder nicht Spike.

Dank neuer Entwicklungen in der Messtechnik können Neurowissenschaftler inzwischen die Aktivität von Dutzenden von Neuronen gleichzeitig messen. Doch bis heute ist nicht geklärt, welche Eigenschaften die binären Muster haben, die sich aus der Spike-Aktivität der Nervenzellen ergeben.

Dieses Dilemma hat Theoretiker unter den Neurowissenschaftlern dazu veranlasst nach statistischen Methoden zu suchen, mit denen sie die Signalmuster des Gehirns modellieren können, um besser zu verstehen, wie Sinneswahrnehmungen auf der Ebene der Nerven kodiert werden. Wichtige Anregungen dazu stammen aus der Theoretischen Physik: Physiker haben reichhaltige Erfahrungen im Studium von Systemen, in denen viele Elemente miteinander in Wechselwirkung stehen. Zum Beispiel haben sie das sogenannte Ising-Modell entwickelt, das beschreibt, wie eine große Zahl ferromagnetischer Teilchen ein kollektives Verhalten entwickelt, das letztlich den Magnetismus des Materials ausmacht.

In mehreren Studien hat sich nun gezeigt, dass dieses Ising-Modell erstaunlich präzise Beschreibungen der Aktivitäten in einer Nervenpopulation liefern kann. Dieser Erfolg eines relativ einfachen Modells hat die Hoffnung genährt, dass die Suche nach dem neuronalen Code nicht vergeblich bleiben muss. Ganz ungetrübt blieb diese Hoffnung allerdings nicht. Gerade in jüngster Zeit hat das Ising-Modell in einigen Studien die beobachtete neuronale Statistik nicht wiedergeben können. Das Modell versagte, und zwar auf charakteristische, interessante Weise.

Wann und warum liefert das stark vereinfachende Ising-Modell eine gute Beschreibung neuronaler Aktivität? Ein Team von Wissenschaftlern aus London, Berlin und Tübingen ist jetzt mit einer mathematischen Analyse einer Antwort auf diese Frage näher gekommen. Ihre Studie ist in der aktuellen Ausgabe der „Physical Review Letters“ erschienen. Die Studie entstand in Zusammenarbeit von Dr. Jakob Macke und Prof. Dr. Matthias Bethge vom Werner-Reichardt Zentrum für Integrative Neurowissenschaften (CIN) am Institut für Theoretische Physik der Universität Tübingen und dem Max-Planck-Institut für Biologische Kybernetik in Tübingen, sowie von Prof. Dr. Manfred Opper von der Abteilung Methoden der Künstlichen Intelligenz im Institut für Softwaretechnik und Theoretische Informatik der Technischen Universität Berlin.

Der entscheidende Punkt ihres Denkansatzes ist die Annahme, dass es gemeinsame Eingangssignale gibt, die bei allen Neuronen ankommen, die der experimentierende Wissenschaftler aber womöglich nicht direkt beobachtet. Die Annahme ist plausibel, denn zum Beispiel die Neuronen des visuellen Systems bekommen in nennenswertem Umfang Signale von anderen Neuronen, die alle auf ähnliche Weise stimuliert werden.

Der Erstautor der Studie, Dr. Jakob Macke, der nach Abschluss seiner Promotion an der Universität Tübingen an die „Gatsby Computational Neuroscience Unit“ des University College London gewechselt ist, erläutert: „Obwohl unser Modell recht einfach ist, konnten wir damit eine Reihe empirischer Beobachtungen erklären, von denen einige bisher als widersprüchlich gegolten haben. Es stimmt in gleicher Weise wie das Ising-Modell mit Messungen neuronaler Aktivitäten überein. Aber es sagt auch überraschend gut voraus, wann das Ising-Modell versagen wird und auf welche Weise es versagen wird.“ Die Einfachheit des Modells erlaubte es zu untersuchen, welche Eigenschaften es entwickelt, wenn man es auf große Nervennetzwerke anwendet. „Wir konnten quantitative Vorhersagen über das Verhalten sehr großer Nervenpopulationen machen – solcher Populationen, die sich mit den heute verfügbaren experimentellen Techniken nicht erfassen lassen, von denen wir aber glauben, dass sie sehr relevant für Rechenvorgänge im Gehirn sind“, sagt Macke.

Die Studie, so fassen die Forscher zusammen, stellt einen sehr einfachen Mechanismus vor, nämlich den der gemeinsamen Eingangssignale für alle Neuronen, liefert damit aber möglicherweise eine ganz schlichte Erklärung für eine Reihe scheinbar widersprüchlicher Beobachtungen. Damit liefert das vorgestellte Modell zudem ein schönes Beispiel dafür, wie klassische Modelle im Zusammenhang mit einem neuen wissenschaftlichen Problem wieder nützlich werden können.

Jakob Macke, Manfred Opper, Matthias Bethge: Common Input Explains Higher-Order Correlations and Entropy in a Simple Model of Neural Population Activity. Physical Review Letters, 20/106, 20. Mai 2011, DOI 10.1103/PhysRevLett.106.208102

Kontakt:
Prof. Dr. Matthias Bethge
Universität Tübingen
Werner Reichardt Centrum für Integrative Neurowissenschaft (CIN)
Institut für Theoretische Physik, Universität Tübingen
sowie Max-Planck-Institut für Biologische Kybernetik
Telefon: +49 7071 601-1770
E-Mail: http://matthias.bethge[at]uni-tuebingen.de
Dr. Jakob Macke
Gatsby Computational Neuroscience Unit
University College London
Telefon: 0044-207679-5380
E-Mail: http://jakob[at]gatsby.ucl.ac.uk
Universität Tübingen
Hochschulkommunikation
Leiterin Myriam Hönig
Abteilung Presse, Forschungsberichterstattung, Information
Michael Seifert
Telefon +49 7071 29-76789
Telefax +49 7071 29-5566
http://michael.seifert[at]uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de/aktuelles

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Frage der Dynamik
19.02.2018 | Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)

nachricht Forscherteam deckt die entscheidende Rolle des Enzyms PP5 bei Herzinsuffizienz auf
19.02.2018 | Westfälische Wilhelms-Universität Münster

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

Von Bitcoins bis zur Genomchirurgie

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zukunft wird gedruckt

19.02.2018 | Architektur Bauwesen

Fraunhofer HHI präsentiert neueste VR- und 5G-Technologien auf dem Mobile World Congress

19.02.2018 | Messenachrichten

Stabile Gashydrate lösen Hangrutschung aus

19.02.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics