Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Wege des Insulin verfolgen

24.11.2015

Insulin wird seit vielen Jahrzehnten gegen Diabetes eingesetzt. Doch erstaunlicherweise ist nur wenig darüber bekannt, wie es sich in den Zellen des Menschen verhält. Das erforschen nun Wissenschaftler vom Biozentrum in Kooperation mit einer dänischen Firma.

Kopenhagen, im September 2014: Professor Markus Sauer vom Biozentrum der Universität Würzburg hält auf einem Symposium an der Universität Kopenhagen einen Vortrag. Er stellt die hochauflösende Mikroskopietechnik dSTORM vor, die er selbst entwickelt hat: Sie liefert extrem scharfe Bilder von einzelnen Biomolekülen, etwa von den Zuckern und Proteinen auf Körperzellen.


Mikroskopietechnik dSTORM: Verteilung des beta-1-adrenergen Rezeptors auf der Membran einer Nierenzelle mit fast molekularer Auflösung. Die fädigen Strukturen sind Ausläufer der Zelle.

Bild: Teresa Klein

Im Publikum sind auch zwei Wissenschaftler aus der Forschungsabteilung der dänischen Firma Novo Nordisk, eines weltweit tätigen Herstellers von Insulinpräparaten. Was der Würzburger Professor berichtet, interessiert die beiden brennend, und so sprechen sie ihn nach seinem Vortrag an.

Was die Firmenvertreter wissen wollen: Ob man mit dSTORM nicht gemeinsam herausfinden könne, welche Wege das Insulin in den Zellen des Menschen geht. Zwar wird Insulin seit Jahrzehnten als blutzuckersenkendes Mittel bei Diabetes eingesetzt, doch seine molekulare Wirkungsweise ist weitgehend unbekannt.

Markus Sauer sagt der Firma eine Kooperation zu, und die startet im April 2015. Im Würzburger Biozentrum befasst sich seitdem Dr. Teresa Klein mit dem Projekt. Die Biologin verfügt über das exakt passende Vorwissen: In ihrer Doktorarbeit hat sie untersucht, wie sich dSTORM zur Visualisierung von Strukturen in lebenden Zellen nutzen lässt.

Was am Biozentrum untersucht wird

Was Insulin im Körper bewirkt: An den Oberflächen von Muskel-, Fett- und Leberzellen bindet es an einen Rezeptor und wird dann mit diesem zusammen in die Zellen aufgenommen. Dort setzt es einen Mechanismus in Gang, als dessen Folge vermehrt Zucker aus dem Blut in die Zellen wandert – der Blutzuckerspiegel sinkt.

„Wir konzentrieren uns auf das, was mit dem Insulin und seinem Rezeptor passiert, direkt nachdem beide in die Zelle gelangt sind“, sagt Klein. Bleiben die zwei Partner dort zusammen oder trennen sie sich? Falls ja, wie schnell geht das und wie sehen ihre weiteren Wege in der Zelle aus? Wird das Insulin abgebaut oder recycelt? Das sind nur einige Fragen, die noch ungeklärt sind.

Wie die Wissenschaftlerin vorgeht

Um die Antworten zu finden, bringt Teresa Klein Insulin in Kontakt mit Leberzellkulturen und lässt es unterschiedlich lange einwirken. Noch testet die Wissenschaftlerin, wie sie die Proben vorbereiten und wie sie verschiedene Zielmoleküle mit Fluoreszenzfarbstoffen markieren muss, damit sich die Wege des Insulin möglichst optimal nachvollziehen lassen.

Dafür setzt sie nicht sofort die dSTORM-Methode ein, sondern erst einmal eine einfacher durchzuführende Form der hochauflösenden Fluoreszenz-Mikroskopie. Mit gutem Grund: „Wenn auf diesem Weg etwas nicht klappt, wird es später mit dSTORM auch nicht funktionieren.“ Mit ihren Tests ist Klein aber schon so weit, dass sie voraussichtlich Ende 2015 zu ersten Versuchen mit dSTORM übergehen kann.

Wie die Kooperation mit der Firma aussieht

„Zum Start des Projekts war ich zwei Monate in der Kopenhagener Forschungsabteilung der Firma und habe dort Grundlegendes über die Biologie des Insulins gelernt“, sagt Klein. Alle zwei Wochen bespricht sie nun in Telefonkonferenzen mit ihren Betreuern bei Novo Nordisk die neuesten Fortschritte. Am Ende des zweijährigen Projekts steht ein weiterer Aufenthalt in Kopenhagen, um das neue Wissen nachhaltig in die Firma hineinzutragen.

Für das Projekt wurde Teresa Klein in das STAR-Postdoc-Fellowship-Förderprogramm des Unternehmens aufgenommen. Mit diesem Programm will die Firma unter anderem Kontakte zu exzellenten Forschungseinrichtungen etablieren und ausweiten. Was sie gemeinsam mit dem Würzburger Biozentrum erarbeitet, soll in gemeinsamen Publikationen öffentlich gemacht werden. Im Idealfall können die neuen Erkenntnisse dabei helfen, noch bessere Insulinpräparate zu entwickeln.

Kontakt

Prof. Dr. Markus Sauer, Dr. Teresa Klein, Lehrstuhl für Biotechnologie und Biophysik, Universität Würzburg, T (0931) 31-88687, m.sauer@uni-wuerzburg.de, teresa.klein@uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise