Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Vererbung von Gensiegeln

17.03.2017

Obwohl alle Zellen die gleichen Gene enthalten, sind je nach Zelltyp nur einige von ihnen aktiv - andere bleiben inaktiv. Gene winden sich als DNA-Faden um Histonproteine. Muss ein Gen inaktiv bleiben, werden seine Histone vom Enzym PRC2 markiert, vergleichbar mit einem Buch, das versiegelt wird und so nicht gelesen werden kann. Nach jeder Zellteilung - wenn Gene kopiert und wieder um Histone gewickelt werden ‒ müssen die Histonmarkierungen wieder an exakt der selben Stelle platziert werden. Den genauen Mechanismus, wie diese Information vererbt wird konnte jetzt Jürg Müller vom Max-Planck-Institut für Biochemie in Martinsried klären. Die Studie wurde im Fachjournal Science veröffentlicht.

In Tieren und Pflanzen ist die genomische DNA im Zellkern um kleine Proteine, die Histone gewickelt. Jürg Müller, Leiter der Abteilung „Biologie des Chromatins“ erklärt: „Die DNA ist wie eine große Bibliotek. Jedes Buch entspricht der genauen Bauanleitung für ein Protein. Obwohl in allen Zellen die selbe DNA-Bibliothek vorhanden ist, sind einige Bücher versiegelt. Eine Muskelzelle braucht andere Protein-Bauanleitungen als eine Darmzelle.“


Wie bei einem versiegelten Buch können einige Gene aus der DNA-Bibliothek nicht gelesen werden, denn manche Gene werden je nach Zelltyp nicht gebraucht. Das Enzym PRC2 hilft in Zellen beim Versiegeln

Es gibt Regulationsmechanismen in Zellen, die das Lesen von Genen verhindern. Die chemische Markierung von Histonproteinen spielt bei der permanenten Versiegelung von Genen eine entscheidende Rolle. Mit der Frage, wie das Lesen von bestimmten Genen in den verschiedenen Zelltypen dauerhaft verhindet und vererbt wird, untersuchte Müller mit seinem Team in der aktuellen Studie.

Histone entscheiden, wie zugänglich ein Gen ist. An Genen, die inaktiv bleiben müssen, werden Histone durch das Enzyms PRC2 chemisch modifiziert. „Wäre das Histon ein Buchverschluss, hilft PRC2 beim Versiegeln, und verhindert das Lesen“, beschreibt Müller.

Bei der Zellteilung wird die Information, welche Gene in welchen Zelltypen aktiv bzw. inaktiv sind an die Tochterzellen weiter gegeben – oder im Bild gesprochen: Alle Bücher müssen kopiert werden. Dabei müssen die Kopien bestimmter Bücher wieder versiegelt werden. Dazu reichen die in der Mutterzelle vorhandenen Histone aber nicht aus. Daher werden neu hergestellte Histone eingebaut.

„Wir haben jetzt untersucht, wie die in der Mutterzelle vorhandenen markierten Histonproteine an einem Gen während der Zellteilung verteilt werden, und wie neu eingebaute Histone die Markierung durch PRC2 erhalten“, so Müller. Die Wissenschaftler fanden heraus, dass die schon markierten Histone zufällig auf die Tochterzellen verteilt werden. Damit PRC2 die „neuen“ Histone versiegeln kann, muss es zuvor an bestimmte Sequenzen in der DNA – sogenannte Polycomb Response Elemente – binden.

„Wird diese Polycomb Response Element-DNA aus der DNA entfernt, kann keine neue PRC2 Histonversiegelung mehr stattfinden. Dann gibt es nur die schon markierten Histone aus der Mutterzelle. Bei jedem weiteren DNA-Kopiervorgang und somit jeder Zellteilung wird die Anzahl der versiegelten Histone verdünnt und geht so nach einigen Teilungen komplett verloren“, erklärt Friederike Laprell, Erstautorin der Studie.

Der Verlust dieser Versiegelung führt dazu, dass Gene aktiv werden, welche neue Entwicklungsprogramme anschalten. So verliert die Zellen innherhalb kürzester Zeit ihre Identität. „Gemeinsam bilden somit die Polycomb Response Element-DNA und PRC2 das Fundament um Gene vererbbar inaktiv zu halten. Nur so bleibt die Zellidentität über viele Generationen hindurch erhalten“, fasst Müller zusammen.

Originalpublikation:
F. Laprell, K. Finkl and J. Müller: Propagation of Polycomb-repressed chromatin requires sequence-specific recruitment to DNA, Science, März 2017
DOI: 10.1126/science.aai8266

Kontakt:
Jürg Müller
Biologie des Chromatiens
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: muellerj@biochem.mpg.de
www.biochem.mpg.de/mueller

Dr. Christiane Menzfeld
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89 8578-2824
E-Mail: pr@biochem.mpg.de
www.biochem.mpg.de

Weitere Informationen:

http://www.biochem.mpg.de - Webseite des Max-Planck-Institutes für Biochemie
http://www.biochem.mpg.de/mueller - Webseite der Forschungsgruppe „Biologie des Chromatiens“

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie

Weitere Berichte zu: Biochemie Biologie Histone Max-Planck-Institut Mutterzelle PRC2 Zellen Zellkern Zellteilung dna

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie