Obwohl alle Zellen die gleichen Gene enthalten, sind je nach Zelltyp nur einige von ihnen aktiv - andere bleiben inaktiv. Gene winden sich als DNA-Faden um Histonproteine. Muss ein Gen inaktiv bleiben, werden seine Histone vom Enzym PRC2 markiert, vergleichbar mit einem Buch, das versiegelt wird und so nicht gelesen werden kann. Nach jeder Zellteilung - wenn Gene kopiert und wieder um Histone gewickelt werden ‒ müssen die Histonmarkierungen wieder an exakt der selben Stelle platziert werden. Den genauen Mechanismus, wie diese Information vererbt wird konnte jetzt Jürg Müller vom Max-Planck-Institut für Biochemie in Martinsried klären. Die Studie wurde im Fachjournal Science veröffentlicht.
In Tieren und Pflanzen ist die genomische DNA im Zellkern um kleine Proteine, die Histone gewickelt. Jürg Müller, Leiter der Abteilung „Biologie des Chromatins“ erklärt: „Die DNA ist wie eine große Bibliotek. Jedes Buch entspricht der genauen Bauanleitung für ein Protein. Obwohl in allen Zellen die selbe DNA-Bibliothek vorhanden ist, sind einige Bücher versiegelt. Eine Muskelzelle braucht andere Protein-Bauanleitungen als eine Darmzelle.“
Es gibt Regulationsmechanismen in Zellen, die das Lesen von Genen verhindern. Die chemische Markierung von Histonproteinen spielt bei der permanenten Versiegelung von Genen eine entscheidende Rolle. Mit der Frage, wie das Lesen von bestimmten Genen in den verschiedenen Zelltypen dauerhaft verhindet und vererbt wird, untersuchte Müller mit seinem Team in der aktuellen Studie.
Histone entscheiden, wie zugänglich ein Gen ist. An Genen, die inaktiv bleiben müssen, werden Histone durch das Enzyms PRC2 chemisch modifiziert. „Wäre das Histon ein Buchverschluss, hilft PRC2 beim Versiegeln, und verhindert das Lesen“, beschreibt Müller.
Bei der Zellteilung wird die Information, welche Gene in welchen Zelltypen aktiv bzw. inaktiv sind an die Tochterzellen weiter gegeben – oder im Bild gesprochen: Alle Bücher müssen kopiert werden. Dabei müssen die Kopien bestimmter Bücher wieder versiegelt werden. Dazu reichen die in der Mutterzelle vorhandenen Histone aber nicht aus. Daher werden neu hergestellte Histone eingebaut.
„Wir haben jetzt untersucht, wie die in der Mutterzelle vorhandenen markierten Histonproteine an einem Gen während der Zellteilung verteilt werden, und wie neu eingebaute Histone die Markierung durch PRC2 erhalten“, so Müller. Die Wissenschaftler fanden heraus, dass die schon markierten Histone zufällig auf die Tochterzellen verteilt werden. Damit PRC2 die „neuen“ Histone versiegeln kann, muss es zuvor an bestimmte Sequenzen in der DNA – sogenannte Polycomb Response Elemente – binden.
„Wird diese Polycomb Response Element-DNA aus der DNA entfernt, kann keine neue PRC2 Histonversiegelung mehr stattfinden. Dann gibt es nur die schon markierten Histone aus der Mutterzelle. Bei jedem weiteren DNA-Kopiervorgang und somit jeder Zellteilung wird die Anzahl der versiegelten Histone verdünnt und geht so nach einigen Teilungen komplett verloren“, erklärt Friederike Laprell, Erstautorin der Studie.
Der Verlust dieser Versiegelung führt dazu, dass Gene aktiv werden, welche neue Entwicklungsprogramme anschalten. So verliert die Zellen innherhalb kürzester Zeit ihre Identität. „Gemeinsam bilden somit die Polycomb Response Element-DNA und PRC2 das Fundament um Gene vererbbar inaktiv zu halten. Nur so bleibt die Zellidentität über viele Generationen hindurch erhalten“, fasst Müller zusammen.
Originalpublikation:
F. Laprell, K. Finkl and J. Müller: Propagation of Polycomb-repressed chromatin requires sequence-specific recruitment to DNA, Science, März 2017
DOI: 10.1126/science.aai8266
Kontakt:
Jürg Müller
Biologie des Chromatiens
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: muellerj@biochem.mpg.de
www.biochem.mpg.de/mueller
Dr. Christiane Menzfeld
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89 8578-2824
E-Mail: pr@biochem.mpg.de
www.biochem.mpg.de
http://www.biochem.mpg.de - Webseite des Max-Planck-Institutes für Biochemie
http://www.biochem.mpg.de/mueller - Webseite der Forschungsgruppe „Biologie des Chromatiens“
Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie
Weitere Berichte zu: > Biochemie > Biologie > Histone > Max-Planck-Institut > Mutterzelle > PRC2 > Zellen > Zellkern > Zellteilung > dna
Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main
Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie
Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können
Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...
Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.
Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...
University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.
Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.
Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.
Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...
Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...
Anzeige
Anzeige
Internationale Konferenz zur Digitalisierung
19.04.2018 | Veranstaltungen
124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus
19.04.2018 | Veranstaltungen
DFG unterstützt Kongresse und Tagungen - Juni 2018
17.04.2018 | Veranstaltungen
Grösster Elektrolaster der Welt nimmt Arbeit auf
20.04.2018 | Interdisziplinäre Forschung
Bilder magnetischer Strukturen auf der Nano-Skala
20.04.2018 | Physik Astronomie
Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas
20.04.2018 | Geowissenschaften