Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die tickende Gen-Uhr hat ausgedient

15.07.2014

Max-Planck-Forscher entdecken, wie ein Doppler-Effekt die Entstehung der Körpersegmente steuert

Die Körper vieler Lebewesen sind in Abschnitte unterteilt. Dieses Muster kann man von Würmern bis zum Menschen immer wieder erkennen. Diese Segmentierung findet sehr früh in der Entwicklung statt: Entsteht etwa die Wirbelsäule, bilden sich in einer rhythmisch fortlaufenden Folge die Wirbelvorläufer.


Entstehung der Körpersegmente in einem Zebrafischembryo. Die Aktivität der Gene verläuft in Wellen, die vom hinteren in den vorderen Teil des Tieres wandern. Gleichzeitig bewegt sich das Gewebe auf diese Wellen zu – ein Doppler-Effekt entsteht.

© MPI f. molekulare Zellbiologie und Genetik, Dresden/ Soroldoni

Der Proteinkomplex, der dies wie eine tickende Uhr in Wellen steuert, wird deshalb „Segmentation Clock“ genannt. Bisher erklärte man sich diese Musterbildung mit der zeitlichen Abfolge von in Wellen ablaufender Genaktivität.

Die neuesten Erkenntnisse von Wissenschaftlern des Max-Planck-Instituts für molekulare Zellbiologie und Genetik in Dresden Forscher legen nahe, dass die Einteilung in Köpersegmente ausgeklügelter als bisher angenommen reguliert wird. Aus Genexpressions-Wellen in einem sich verkürzenden Gewebe entsteht eine Art Doppler-Effekt, der den Rhythmus der Segmentierung beeinflusst.

Ähnlich wie bei vielen Tieren ist auch der menschliche Körper entlang seiner Achse in Segmente eingeteilt. Während der embryonalen Entwicklung helfen räumliche und zeitliche Signale dabei, die richtige Anzahl von Segmenten zu bilden, die später zu Rippen und Wirbeln werden. Der Rhythmus dieses Strukturierungsprozesses ist dabei entscheidend. Wie aber wird der ganze Vorgang zeitlich koordiniert?

Bei Wirbeltieren stellt man sich die Segmentierung während der embryonalen Entwicklung als Wellen von Genen vor, die in ihrer Aktivität anschwellen und abebben. Den Rhythmus, der diesem komplexen Netzwerk unterliegt und es steuert, vergleicht man mit einer tickenden Uhr:

Bei jedem Ticken bildet sich ein neues Segment. Dieses Bild stellten die Dresdner Forscher um den Biologen Andy Oates und den Physiker Frank Jülicher vom Max-Planck-Institut für molekulare Zellbiologie und Genetik zusammen mit Kollegen vom Max-Planck-Institut für Physik komplexer Systeme auf den Prüfstand: Sie entwickelten eine neue transgene Zebrafisch-Art („Looping“) und ein mehrdimensionales Zeitraffer-Mikroskop.

Mit diesem konnten sie nun gleichzeitig die Genexpressionswellen und die Segmentbildung sichtbar machen. Dabei haben sie beobachtet, dass das Einsetzen und Abschwellen der Genexpression in unterschiedlichen Abständen erfolgt. Das Bild der tickenden Uhr hat damit als Erklärungsmodell ausgedient. Vielmehr beeinflusst eine Art Doppler-Effekt die Segmentbildung.

Schallwellen und Genexpressionswellen

Ein Doppler-Effekt tritt auf, wenn beispielsweise ein Krankenwagen mit Martinshorn an einem Passanten vorüber fährt. Dabei ändert sich den Passanten scheinbar die Tonhöhe der Sirene, denn die Frequenz der Schallwellen steigt und fällt mit der erst zu- und dann wieder abnehmenden Entfernung zwischen Sender und Empfänger.

Wie sich nun zeigt: Schallwellen verhalten sich die Wellen der Genexpression in einem sich entwickelnden Zebrafisch gar nicht so unterschiedlich. Sie wandern von der Schwanzspitze zum Kopf des Tieres. Gleichzeitig entwickelt sich aber der Embryo weiter, seine Form verändert sich also, teilweise verkürzt sich dabei Gewebe.

Der vordere Teil des Fisches, an dem die entstehenden Segmente angesiedelt sind, bewegt sich auf das hintere Ende zu, von dem die Genexpressionswellen geschickt werden – es kommt zu einem Doppler-Effekt in dem wachsenden Fischembryo. Überlagert wird dieser Effekt durch sich ständig verändernde Wellenlängen. Dies wirkt dem Doppler-Effekt entgegen, kann ihn aber nicht unterdrücken. Durch dieses komplexe Timing werden Anzahl und Größe der entstehenden Wirbel und Rippen gelenkt.

Die Erkenntnisse der Dresdner Forscher könnten unser Verständnis von der zeitlichen Steuerung der Segmentierung während der Entwicklung revolutionieren. Was genau die unterschiedlichen Wellenprofile auslöst, wissen die Forscher noch nicht.

Ansprechpartner 

Florian Frisch

Presse- und Öffentlichkeitsarbeit

Max-Planck-Institut für molekulare Zellbiologie und Genetik, Dresden

Telefon: +49 351 210-2840
Fax: +49 351 210-2020

 

Originalpublikation

 
Daniele Soroldoni, David J. Jörg, Luis G. Morelli, David L. Richmond, Johannes Schindelin, Frank Jülicher, Andrew C. Oates
A Doppler effect in embryonic pattern formation.
Science, 11 July 2014

Florian Frisch | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8300236/gen-expression_doppler-effekt

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Licht zur Herstellung energiereicher Chemikalien nutzen
22.05.2018 | Friedrich-Schiller-Universität Jena

nachricht Junger Embryo verspeist gefährliche Zelle
22.05.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics