Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die tickende Gen-Uhr hat ausgedient

15.07.2014

Max-Planck-Forscher entdecken, wie ein Doppler-Effekt die Entstehung der Körpersegmente steuert

Die Körper vieler Lebewesen sind in Abschnitte unterteilt. Dieses Muster kann man von Würmern bis zum Menschen immer wieder erkennen. Diese Segmentierung findet sehr früh in der Entwicklung statt: Entsteht etwa die Wirbelsäule, bilden sich in einer rhythmisch fortlaufenden Folge die Wirbelvorläufer.


Entstehung der Körpersegmente in einem Zebrafischembryo. Die Aktivität der Gene verläuft in Wellen, die vom hinteren in den vorderen Teil des Tieres wandern. Gleichzeitig bewegt sich das Gewebe auf diese Wellen zu – ein Doppler-Effekt entsteht.

© MPI f. molekulare Zellbiologie und Genetik, Dresden/ Soroldoni

Der Proteinkomplex, der dies wie eine tickende Uhr in Wellen steuert, wird deshalb „Segmentation Clock“ genannt. Bisher erklärte man sich diese Musterbildung mit der zeitlichen Abfolge von in Wellen ablaufender Genaktivität.

Die neuesten Erkenntnisse von Wissenschaftlern des Max-Planck-Instituts für molekulare Zellbiologie und Genetik in Dresden Forscher legen nahe, dass die Einteilung in Köpersegmente ausgeklügelter als bisher angenommen reguliert wird. Aus Genexpressions-Wellen in einem sich verkürzenden Gewebe entsteht eine Art Doppler-Effekt, der den Rhythmus der Segmentierung beeinflusst.

Ähnlich wie bei vielen Tieren ist auch der menschliche Körper entlang seiner Achse in Segmente eingeteilt. Während der embryonalen Entwicklung helfen räumliche und zeitliche Signale dabei, die richtige Anzahl von Segmenten zu bilden, die später zu Rippen und Wirbeln werden. Der Rhythmus dieses Strukturierungsprozesses ist dabei entscheidend. Wie aber wird der ganze Vorgang zeitlich koordiniert?

Bei Wirbeltieren stellt man sich die Segmentierung während der embryonalen Entwicklung als Wellen von Genen vor, die in ihrer Aktivität anschwellen und abebben. Den Rhythmus, der diesem komplexen Netzwerk unterliegt und es steuert, vergleicht man mit einer tickenden Uhr:

Bei jedem Ticken bildet sich ein neues Segment. Dieses Bild stellten die Dresdner Forscher um den Biologen Andy Oates und den Physiker Frank Jülicher vom Max-Planck-Institut für molekulare Zellbiologie und Genetik zusammen mit Kollegen vom Max-Planck-Institut für Physik komplexer Systeme auf den Prüfstand: Sie entwickelten eine neue transgene Zebrafisch-Art („Looping“) und ein mehrdimensionales Zeitraffer-Mikroskop.

Mit diesem konnten sie nun gleichzeitig die Genexpressionswellen und die Segmentbildung sichtbar machen. Dabei haben sie beobachtet, dass das Einsetzen und Abschwellen der Genexpression in unterschiedlichen Abständen erfolgt. Das Bild der tickenden Uhr hat damit als Erklärungsmodell ausgedient. Vielmehr beeinflusst eine Art Doppler-Effekt die Segmentbildung.

Schallwellen und Genexpressionswellen

Ein Doppler-Effekt tritt auf, wenn beispielsweise ein Krankenwagen mit Martinshorn an einem Passanten vorüber fährt. Dabei ändert sich den Passanten scheinbar die Tonhöhe der Sirene, denn die Frequenz der Schallwellen steigt und fällt mit der erst zu- und dann wieder abnehmenden Entfernung zwischen Sender und Empfänger.

Wie sich nun zeigt: Schallwellen verhalten sich die Wellen der Genexpression in einem sich entwickelnden Zebrafisch gar nicht so unterschiedlich. Sie wandern von der Schwanzspitze zum Kopf des Tieres. Gleichzeitig entwickelt sich aber der Embryo weiter, seine Form verändert sich also, teilweise verkürzt sich dabei Gewebe.

Der vordere Teil des Fisches, an dem die entstehenden Segmente angesiedelt sind, bewegt sich auf das hintere Ende zu, von dem die Genexpressionswellen geschickt werden – es kommt zu einem Doppler-Effekt in dem wachsenden Fischembryo. Überlagert wird dieser Effekt durch sich ständig verändernde Wellenlängen. Dies wirkt dem Doppler-Effekt entgegen, kann ihn aber nicht unterdrücken. Durch dieses komplexe Timing werden Anzahl und Größe der entstehenden Wirbel und Rippen gelenkt.

Die Erkenntnisse der Dresdner Forscher könnten unser Verständnis von der zeitlichen Steuerung der Segmentierung während der Entwicklung revolutionieren. Was genau die unterschiedlichen Wellenprofile auslöst, wissen die Forscher noch nicht.

Ansprechpartner 

Florian Frisch

Presse- und Öffentlichkeitsarbeit

Max-Planck-Institut für molekulare Zellbiologie und Genetik, Dresden

Telefon: +49 351 210-2840
Fax: +49 351 210-2020

 

Originalpublikation

 
Daniele Soroldoni, David J. Jörg, Luis G. Morelli, David L. Richmond, Johannes Schindelin, Frank Jülicher, Andrew C. Oates
A Doppler effect in embryonic pattern formation.
Science, 11 July 2014

Florian Frisch | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8300236/gen-expression_doppler-effekt

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie