Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Rost-Formel

05.12.2014

Jahrelang hat man sich über das merkwürdige Verhalten von Eisenoxid-Oberflächen gewundert. Untersuchungen der TU Wien zeigen nun, dass man bisher eine ganz falsche Vorstellung von ihrer Kristallstruktur hatte.

Magnetit (oder Fe3O4) ist im Grunde eine spezielle Form von Rost – eine regelmäßige Anordnung von Sauerstoff und Eisenatomen. Doch dieses Material spielt eine immer größere technologische Rolle, in Katalysatoren, elektronischen Bauteilen und für medizinische Anwendungen.


Die Struktur von Eisenoxid wurde an der TU Wien erforscht

TU Wien


Eine Probe in der Vakuumkammer

TU Wien

Eigentlich dachte man schon lange, die atomare Struktur der Magnetit-Oberfläche sei bestens bekannt. Wie Forschungen an der TU Wien nun aber zeigten, lag man damit falsch. Die Eigenschaften von Magnetit werden ganz wesentlich davon bestimmt, dass in der vorletzten Atomschicht, gleich unter der Oberfläche, einzelne Eisenatome fehlen. „Es stellt sich heraus, dass die Oberfläche von Fe3O4 eigentlich gar kein Fe3O4 ist, sondern eher Fe11O16“, sagt Prof. Ulrike Diebold, die Leiterin der Metalloxid-Forschungsgruppe an der TU Wien. Die neuen Erkenntnisse wurden nun im Journal „Science“ publiziert.

Das Material, das sich einfach nicht benehmen will

Eine der erstaunlichsten Eigenschaften der Magnetit-Oberfläche ist, dass man auf ihr dauerhaft einzelne Atome wie Gold oder Palladium anbringen kann. Die Atome ballen sich dann nicht wie sonst zu Nanopartikeln zusammen, sondern bleiben brav an Ort und Stelle. Dieser Effekt könnte die Oberfläche zu einem extrem effizienten Katalysator für chemische Reaktionen machen – aber bisher wusste niemand, warum sich Magnetit sich so verhält. „Man hat auch festgestellt, dass Fe3O4-basierte Elektronik nie so gut funktioniert wie sie sollte”, sagt Gareth Parkinson (TU Wien). „Jedes Material wechselwirkt über seine Oberfläche mit der Umwelt, es ist für uns daher entscheidend, die Struktur der Oberfläche zu verstehen und zu wissen, wie sie entsteht.“

Oft werden die Eigenschaften von Metalloxiden durch fehlende Sauerstoffatome in den obersten Atomschichten bestimmt. Solche Fehlstellen können die elektronischen Eigenschaften des Materials drastisch beeinflussen. „Jeder in der Forschungscommunity denkt über fehlende Sauerstoffatome nach. Deshalb hat es eine ganze Weile gedauert, bis uns klar wurde, dass es hier in Wirklichkeit um fehlende Eisenatome geht“, sagt Gareth Parkinson.

Es ist nicht der Sauerstoff, es ist das Metall

Statt einer unveränderlichen Struktur aus Metallatomen mit zusätzlich eingebautem Sauerstoff muss man Eisenoxide eher als wohldefinierte Sauerstoff-Struktur betrachten, in der sich kleine Metallatome verstecken. Direkt unterhalb der äußersten Atomschicht verändert sich die Kristallstruktur und gewisse Eisenatome fehlen.

Genau oberhalb solcher Eisen-Fehlstellen können sich andere Metallatome von außen an die Oberfläche anlagern. Die Eisen-Fehlstellen sind gleichmäßig angeordnet, dadurch ergibt sich ein regelmäßiger Abstand zwischen Gold- oder Palladiumatomen, die an der Oberfläche festgehalten werden können. Das erklärt, warum Magnetit das Zusammenballen dieser Atome zu Atomclustern verhindert.

Die Idee, ganz neu über die Kristallstruktur von Magnetit nachzudenken war gewagt, das Forschungsteam überprüfte die Theorie daher ganz besonders sorgfältig. Quantenphysikalische Simulationsrechnungen wurden auf großen Supercomputern durchgeführt um zu zeigen, dass die vorgeschlagene Struktur physikalisch tatsächlich plausibel war. Danach wurden gemeinsam mit der Universität Erlangen-Nürnberg Elektronenstreuexperimente durchgeführt.

„Indem man langsame Elektronen an Oberflächen streut, kann man messen, wie exakt die tatsächliche Kristallstruktur mit einem theoretischen Modell übereinstimmt“, sagt Ulrike Diebold. Die Übereinstimmung wird mit dem sogenannten „R-Wert“ gemessen. „Bei sehr genau bekannten Strukturen erhält man einen R-Wert von 0.1 oder 0.15. Bei Magnetit hatte bisher niemand einen besseren R-Wert als 0.3 erreicht, und man dachte, besser geht es dort einfach nicht.“ Aber die neue Magnetit-Struktur mit fehlenden Eisenatomen passt ausgezeichnet zu den experimentellen Daten – mit einem R-Wert von 0.125.

Jetzt geht’s erst richtig los

Metalloxide gelten als technologisch sehr wichtig, aber gleichzeitig als schwer zu beschreiben. „Unsere Ergebnisse zeigen, dass es hier gar keinen Grund zum Pessimismus gibt. Auch Metalloxide können sehr genau modelliert werden, nur eben vielleicht nicht auf die Art, wie man auf den ersten Blick meinen könnte“, sagt Gareth Parkinson. Das Forschungsteam geht davon aus, dass sich die neuen Erkenntnisse nicht nur auf Eisenoxid anwenden lassen, sondern auch auf Oxide von Kobalt, Mangan oder Nickel. Neu über deren Kristallstruktur nachzudenken könnte die Metalloxid-Forschung in vielen Bereichen beflügeln und zu neuen Anwendungen in der chemischen Katalyse, in der Elektronik oder der Medizin führen.

Das Forschungsprojekt baut Brücken zwischen Physik und Chemie. Die TU Wien hat das Doktoratskolleg „Solids4fun“ geschaffen, um die enge, interdisziplinäre Zusammenarbeit im Bereich der Metall- und Oberflächenforschung zu fördern.

Rückfragehinweise:
Prof. Ulrike Diebold
Institut für Angewandte Physik
Technische Universität Wien
Wiedner Hauptstraße 8, 1040 Wien
T: +43-1-58801-13425
ulrike.diebold@tuwien.ac.at

Gareth Parkinson, PhD
Institut für Angewandte Physik
Technische Universität Wien
Wiedner Hauptstraße 8, 1040 Wien
T: +43-1-58801-13473
gareth.parkinson@tuwien.ac.at


Weitere Informationen:

http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2014/rost_formel/  weitere Fotos
http://solids4fun.tuwien.ac.at/  Solids4Fun-Webseite

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einblick ins geschlossene Enzym
26.06.2017 | Universität Konstanz

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie