Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Rost-Formel

05.12.2014

Jahrelang hat man sich über das merkwürdige Verhalten von Eisenoxid-Oberflächen gewundert. Untersuchungen der TU Wien zeigen nun, dass man bisher eine ganz falsche Vorstellung von ihrer Kristallstruktur hatte.

Magnetit (oder Fe3O4) ist im Grunde eine spezielle Form von Rost – eine regelmäßige Anordnung von Sauerstoff und Eisenatomen. Doch dieses Material spielt eine immer größere technologische Rolle, in Katalysatoren, elektronischen Bauteilen und für medizinische Anwendungen.


Die Struktur von Eisenoxid wurde an der TU Wien erforscht

TU Wien


Eine Probe in der Vakuumkammer

TU Wien

Eigentlich dachte man schon lange, die atomare Struktur der Magnetit-Oberfläche sei bestens bekannt. Wie Forschungen an der TU Wien nun aber zeigten, lag man damit falsch. Die Eigenschaften von Magnetit werden ganz wesentlich davon bestimmt, dass in der vorletzten Atomschicht, gleich unter der Oberfläche, einzelne Eisenatome fehlen. „Es stellt sich heraus, dass die Oberfläche von Fe3O4 eigentlich gar kein Fe3O4 ist, sondern eher Fe11O16“, sagt Prof. Ulrike Diebold, die Leiterin der Metalloxid-Forschungsgruppe an der TU Wien. Die neuen Erkenntnisse wurden nun im Journal „Science“ publiziert.

Das Material, das sich einfach nicht benehmen will

Eine der erstaunlichsten Eigenschaften der Magnetit-Oberfläche ist, dass man auf ihr dauerhaft einzelne Atome wie Gold oder Palladium anbringen kann. Die Atome ballen sich dann nicht wie sonst zu Nanopartikeln zusammen, sondern bleiben brav an Ort und Stelle. Dieser Effekt könnte die Oberfläche zu einem extrem effizienten Katalysator für chemische Reaktionen machen – aber bisher wusste niemand, warum sich Magnetit sich so verhält. „Man hat auch festgestellt, dass Fe3O4-basierte Elektronik nie so gut funktioniert wie sie sollte”, sagt Gareth Parkinson (TU Wien). „Jedes Material wechselwirkt über seine Oberfläche mit der Umwelt, es ist für uns daher entscheidend, die Struktur der Oberfläche zu verstehen und zu wissen, wie sie entsteht.“

Oft werden die Eigenschaften von Metalloxiden durch fehlende Sauerstoffatome in den obersten Atomschichten bestimmt. Solche Fehlstellen können die elektronischen Eigenschaften des Materials drastisch beeinflussen. „Jeder in der Forschungscommunity denkt über fehlende Sauerstoffatome nach. Deshalb hat es eine ganze Weile gedauert, bis uns klar wurde, dass es hier in Wirklichkeit um fehlende Eisenatome geht“, sagt Gareth Parkinson.

Es ist nicht der Sauerstoff, es ist das Metall

Statt einer unveränderlichen Struktur aus Metallatomen mit zusätzlich eingebautem Sauerstoff muss man Eisenoxide eher als wohldefinierte Sauerstoff-Struktur betrachten, in der sich kleine Metallatome verstecken. Direkt unterhalb der äußersten Atomschicht verändert sich die Kristallstruktur und gewisse Eisenatome fehlen.

Genau oberhalb solcher Eisen-Fehlstellen können sich andere Metallatome von außen an die Oberfläche anlagern. Die Eisen-Fehlstellen sind gleichmäßig angeordnet, dadurch ergibt sich ein regelmäßiger Abstand zwischen Gold- oder Palladiumatomen, die an der Oberfläche festgehalten werden können. Das erklärt, warum Magnetit das Zusammenballen dieser Atome zu Atomclustern verhindert.

Die Idee, ganz neu über die Kristallstruktur von Magnetit nachzudenken war gewagt, das Forschungsteam überprüfte die Theorie daher ganz besonders sorgfältig. Quantenphysikalische Simulationsrechnungen wurden auf großen Supercomputern durchgeführt um zu zeigen, dass die vorgeschlagene Struktur physikalisch tatsächlich plausibel war. Danach wurden gemeinsam mit der Universität Erlangen-Nürnberg Elektronenstreuexperimente durchgeführt.

„Indem man langsame Elektronen an Oberflächen streut, kann man messen, wie exakt die tatsächliche Kristallstruktur mit einem theoretischen Modell übereinstimmt“, sagt Ulrike Diebold. Die Übereinstimmung wird mit dem sogenannten „R-Wert“ gemessen. „Bei sehr genau bekannten Strukturen erhält man einen R-Wert von 0.1 oder 0.15. Bei Magnetit hatte bisher niemand einen besseren R-Wert als 0.3 erreicht, und man dachte, besser geht es dort einfach nicht.“ Aber die neue Magnetit-Struktur mit fehlenden Eisenatomen passt ausgezeichnet zu den experimentellen Daten – mit einem R-Wert von 0.125.

Jetzt geht’s erst richtig los

Metalloxide gelten als technologisch sehr wichtig, aber gleichzeitig als schwer zu beschreiben. „Unsere Ergebnisse zeigen, dass es hier gar keinen Grund zum Pessimismus gibt. Auch Metalloxide können sehr genau modelliert werden, nur eben vielleicht nicht auf die Art, wie man auf den ersten Blick meinen könnte“, sagt Gareth Parkinson. Das Forschungsteam geht davon aus, dass sich die neuen Erkenntnisse nicht nur auf Eisenoxid anwenden lassen, sondern auch auf Oxide von Kobalt, Mangan oder Nickel. Neu über deren Kristallstruktur nachzudenken könnte die Metalloxid-Forschung in vielen Bereichen beflügeln und zu neuen Anwendungen in der chemischen Katalyse, in der Elektronik oder der Medizin führen.

Das Forschungsprojekt baut Brücken zwischen Physik und Chemie. Die TU Wien hat das Doktoratskolleg „Solids4fun“ geschaffen, um die enge, interdisziplinäre Zusammenarbeit im Bereich der Metall- und Oberflächenforschung zu fördern.

Rückfragehinweise:
Prof. Ulrike Diebold
Institut für Angewandte Physik
Technische Universität Wien
Wiedner Hauptstraße 8, 1040 Wien
T: +43-1-58801-13425
ulrike.diebold@tuwien.ac.at

Gareth Parkinson, PhD
Institut für Angewandte Physik
Technische Universität Wien
Wiedner Hauptstraße 8, 1040 Wien
T: +43-1-58801-13473
gareth.parkinson@tuwien.ac.at


Weitere Informationen:

http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2014/rost_formel/  weitere Fotos
http://solids4fun.tuwien.ac.at/  Solids4Fun-Webseite

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Genetische Vielfalt schützt vor Krankheiten
23.05.2018 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt
22.05.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Im Focus: Achema 2018: Neues Kamerasystem überwacht Destillation und hilft beim Energiesparen

Um chemische Gemische in ihre Einzelbestandteile aufzutrennen, ist in der Industrie die energieaufwendige Destillation gängig, etwa bei der Raffinerie von Rohöl. Forscher der Technischen Universität Kaiserslautern (TUK) entwickeln ein Kamerasystem, das diesen Prozess überwacht. Dabei misst es, ob es zu einer starken Tropfenbildung kommt, was sich negativ auf die Trennung der Komponenten auswirken kann. Die Technik könnte hier künftig automatisch gegensteuern, wenn sich Messwerte ändern. So ließe sich auch Energie einsparen. Auf der Prozesstechnik-Messe Achema in Frankfurt stellen sie die Technik vom 11. bis 15. Juni am Forschungsstand des Landes Rheinland-Pfalz (Halle 9.2, Stand A86a) vor.

Bei der Destillation werden Flüssigkeiten durch Verdampfen und darauffolgende Kondensation des Dampfes in ihre Bestandteile getrennt. Ein bekanntes Beispiel...

Im Focus: Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

Wie verleiht man Zellen neue Eigenschaften ohne ihren Stoffwechsel zu behindern? Ein Team der Technischen Universität München (TUM) und des Helmholtz Zentrums München veränderte Säugetierzellen so, dass sie künstliche Kompartimente bildeten, in denen räumlich abgesondert Reaktionen ablaufen konnten. Diese machten die Zellen tief im Gewebe sichtbar und mittels magnetischer Felder manipulierbar.

Prof. Gil Westmeyer, Professor für Molekulare Bildgebung an der TUM und Leiter einer Forschungsgruppe am Helmholtz Zentrum München, und sein Team haben dies...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Rotierende Rugbybälle unter den massereichsten Galaxien

23.05.2018 | Physik Astronomie

Invasive Quallen: Strömungen als Ausbreitungsmotor

23.05.2018 | Ökologie Umwelt- Naturschutz

Matrix-Theorie als Ursprung von Raumzeit und Kosmologie

23.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics