Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die optische Vermessung der synaptischen Nano-Welt

30.01.2018

Durchbruch bei der Erforschung der Signalwege: Göttinger Wissenschaftler entwickeln höchstauflösende Messungen der Kalziumkonzentration und entschlüsseln die Zahl und Funktion von Kalziumkanälen an der Synapse.

(umg/cnmpb/MPI-BPC) Die elementaren Prozesse des Lebens finden in den Zellen unseres Körpers auf sehr kleinem Raum im Bereich zwischen Millionstel (Mikro) und Milliardstel (Nano) Metern statt. Ein Beispiel ist die Signalübertragung an Synapsen, den Kontaktstellen, über die Nervenzellen miteinander „sprechen“. Um diese Signale beobachten zu können, haben Wissenschaftler der Universitätsmedizin Göttingen (UMG) sowie des Max-Planck-Instituts (MPI) für biophysikalische Chemie erstmals die von Chemie-Nobelpreisträger Prof. Dr. Stefan Hell, Direktor am Max-Planck-Institut für biophysikalische Chemie, und Kollegen entwickelte optische Nanoskopie für höchstauflösende Messungen der lokalen Kalziumkonzentration in Synapsen nutzbar gemacht. Die Ergebnisse wurden im Januar 2018 im renommierten Wissenschaftsjournal Nature Communications veröffentlicht.


Optische Bildgebung über die Skalengrenzen hinweg: Mittels höchstauflösender Mikroskopie werden die Struktur und Funktion von Sinnesprozessen in der Hörschnecke entschlüsselt.

neef/umg


Erstautor: Dr. Jakob Neef, Institut für Auditorische Neuro-wissenschaften und InnenOhr-Labor der UMG.

privat

Wann bei der Übertragung von Signalen an Synapsen Botenstoffe, wie zum Beispiel Glutamat, aus einzelnen „Botenstoff-Containern“, den synaptischen Vesikeln, freigesetzt werden, wird durch Kalziumionen gesteuert. Die Kalziumionen strömen durch winzige Kanäle, die nur wenige Nanometer von den Vesikeln entfernt liegen, in die Zelle ein.

Folglich sind die Kalziumsignale räumlich sehr begrenzt, sie bilden sogenannte „Kalzium-Nanodomänen“. Dies ermöglicht eine sehr schnelle Regulation der Signale. Zudem schützt es die Zelle vor den giftigen Auswirkungen einer zellweiten Erhöhung der Kalziumkonzentration. Bislang konnten diese Signale nicht direkt vermessen werden, weil ihre Ausdehnung unterhalb der Auflösungsgrenze konventioneller Lichtmikroskopie liegt.

Um diese Signale dennoch beobachten zu können, hilft die optische Nanoskopie weiter. Dafür mussten die Göttinger Forscher zunächst geeignete, kalziumempfindliche Fluoreszenzfarbstoffe finden und charakterisieren. In einem weiteren Schritt wurde die Nanoskopie mit der von den Medizin-Nobelpreisträgern Prof. Dr. Erwin Neher und Prof. Dr. Bert Sakmann in Göttingen entwickelten Patch-Clamp Methode kombiniert, um dann nanoskopische Messungen der Fluoreszenz-Lebensdauer zu etablieren.

Diese Methode macht es jetzt möglich, die Ausbreitung des Kalziumsignals in der Zelle mit bisher unerreichter Genauigkeit sichtbar zu machen. Zudem kann nun auch die Konzentration von Kalziumionen direkt am Ort des Eintritts in die Zelle gemessen werden.

Prof. Tobias Moser, Direktor des Instituts für Auditorische Neurowissenschaften der UMG und Forschungsgruppenleiter am MPI für biophysikalische Chemie, sieht in dem Ergebnis einen Durchbruch bei der Erforschung der Signalwege: „Kalzium ist eines der wichtigsten Signale in Zellen. Der technische Durchbruch, dass wir jetzt Kalziumsignale mit der Präzision von Nanometern und Millisekunden quantifizieren können, eröffnet völlig neue Möglichkeiten für die Erforschung der Zellen von Herz und Nervensystem.“

Die erste Anwendung dieser Methode erfolgte in sensorischen Haarzellen des Innenohres. Hier bilden Kalziumkanäle kleine Ansammlungen – sogenannte Cluster – an den Synapsen. Dort beobachteten die Göttinger Wissenschaftler Kalziumsignale, deren räumliche Ausdehnung gut mit der zuvor bestimmten räumlichen Verteilung der Kalziumkanal-Cluster übereinstimmte. Dabei zeigte sich, dass die Länge der Cluster stark variiert: von rund 100 bis 450 Nanometern. Die Forscher setzten zwei neuartige optische Verfahren ein, mit denen sie die Kalziumkanäle in den Clustern zählen konnten. Dabei entdeckten sie, dass diese Zahl von Synapse zu Synapse zwischen 30 und 300 Kanälen schwankt.

Die Clusterlänge scheint demnach mit der Zahl der Kanäle zu variieren, womit auch die „Stärke“ der Synapse geregelt wird. Die Wissenschaftler schlussfolgern daraus: Die Haarzellen bilden verschieden „starke“ Synapsen aus, um auf diese Weise eine größere Bandbreite an Information an den Hör-Nerv übertragen zu können. Dr. Jakob Neef vom Institut für Auditorische Neurowissenschaften der UMG sagt: „Biologische Variabilität hat in diesem Fall einen konkreten Mehrwert für das Hören: Synapsen mit verschiedenen Kalziumsignal-Eigenschaften teilen sich hier offenbar die Arbeit, Schall in Nervensignale umzuwandeln, um die gesamte Bandbreite der Schalleindrücke von leise bis laut abdecken zu können.“

Mit diesem neuen optischen Verfahren können die Wissenschaftler nun den auf der Nanometer-Skala stattfindenden zellulären Prozessen in einem lebenden Gewebe regelrecht „bei der Arbeit“ zuschauen. Das neue Verfahren ermöglicht das bildliche „Hineinzoomen“ von der Beobachtung des ganzen Organs hinunter bis auf die Zellebene, hin zu einzelnen Synapsen und schließlich auf die Ebene der synaptischen Kalziumkanäle.

Die hier entwickelten optischen Methoden und ihre Kombination mit dem Patch-Clamp-Verfahren stehen nun auch anderen Anwendungen der Lebenswissenschaften und Medizin zur Verfügung. Dr. Nicolai Urban vom MPI für biophysikalische Chemie sagt: „Die optische Nanoskopie ermöglicht physiologische Untersuchungen mit unglaublicher Detailtreue. Mit ihr kommen wir der Entschlüsselung der kleinsten Funktionseinheiten unseres Körpers einen großen Schritt näher.“ So sollen sie etwa nun auch eingesetzt werden, um Kalzium-Nanodomänen in Herzmuskelzellen zu entschlüsseln.

Die Forschung wurde durch den Sonderforschungsbereich 889, den Bernstein Fokus für Neurotechnologie und das Göttinger Exzellenzcluster Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns (CNMPB) gefördert.

WEITERE INFORMATIONEN:
Universitätsmedizin Göttingen
Prof. Dr. Tobias Moser
Institut für Auditorische Neurowissenschaften und InnenOhrLabor
Telefon +49 551 3922837
E-Mail: tmoser@gwdg.de
www.auditory-neuroscience.uni-goettingen.de
www.sfb889.uni-goettingen.de
www.cnmpb.de
www.bccn-goettingen.de

MPI für biophysikalische Chemie
www.mpibpc.mpg.de/de/moser
www3.mpibpc.mpg.de/groups/hell/

Stefan Weller | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.universitaetsmedizin-goettingen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Adenoviren binden gezielt an Strukturen auf Tumorzellen
23.04.2018 | Eberhard Karls Universität Tübingen

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Moleküle brillant beleuchtet

23.04.2018 | Physik Astronomie

Sauber und effizient - Fraunhofer ISE präsentiert Wasserstofftechnologien auf Hannover Messe

23.04.2018 | HANNOVER MESSE

Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen

23.04.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics