Die Glühwürmchen unter den Fischen

Als eines der wenigen leuchtenden Meerestiere lässt sich der Blitzlichtfisch auch im Aquarium halten. Stefan Herlitze (links) und Jens Hellinger untersuchen sein Leuchten. Foto: RUB, Marquard

Nach hinten drehbare Leuchtorgane

Blitzlichtfische, auch Laternenträger genannt, leben in Schwärmen von acht bis 50 Tieren, die nachts auf den Riffdächern der Korallen nach Plankton jagen. Tagsüber ziehen sich die Fische in Tiefen bis zu 400 Meter zurück und ruhen dort wahrscheinlich in Unterwasserhöhlen. Sie besitzen unter ihren Augen nach hinten drehbare Leuchtorgane, in denen sie biolumineszente Bakterien als Symbionten beherbergen. Durch die Drehung der Leuchtorgane erzeugen die Fische Blinkmuster unterschiedlicher Frequenzen. Über die Funktion der Leuchtorgane gab es bisher nur Vermutungen.

„Mit verhaltensbiologischen Methoden ist es uns jetzt gelungen zu zeigen, dass Anomalops katoptron seine Leuchtorgane zur Futtersuche nutzt und seine Blinkfrequenz kontextabhängig anpasst“, erklären Stefan Herlitze und Jens Hellinger. Für die Untersuchungen nutzen die Forscher wasserdichte Infrarotscheinwerfer, die sie eigens mit der Fakultätswerkstatt entwickelt hatten.

Konstantes Leuchten beim Fressen

Ihre Beobachtungen zeigen, dass die Fische während der Nacht im Mittel 90-mal pro Minute blinken. Setzten die Forscher dem Wasser Zooplankton zu, senkten die Tiere schlagartig ihre Blinkfrequenz und zeigen ein nahezu konstantes Leuchten, während sie fraßen. Nicht leuchtende Kontrolltiere derselben Art hatten fast keinen Jagderfolg.

Sie zeigten auch keine Änderung in der Blinkfrequenz bei Anwesenheit von Zooplankton. Die Blinkfrequenz bei nicht leuchtenden Fischen lässt sich über die Beobachtung der Rotation der Leuchtorgane bestimmen. „Diese Ergebnisse zeigen deutlich, dass Anomalops katoptron zur Nahrungssuche auf seine Leuchtorgane angewiesen ist“, folgern Stefan Herlitze und Jens Hellinger.

Weiterhin konnten die Forscher zeigen, dass die Blinkfrequenz der Tiere auch vom Umgebungslicht gesteuert wird. Tagsüber ruhen die Tiere im Riffaquarium bei Dämmerlicht in einer Höhle und halten ihre Leuchtorgane, unterbrochen von kurzen Blinkereignissen, weitgehend geschlossen. Nachts während der Aktivitätsphase zeigen die Tiere dagegen eine hohe Blinkfrequenz. Die genaue Funktion dieser Blinkmuster ist jedoch noch unklar. Ob die Fische über ihre Blinkmuster kommunizieren oder durch das Blinken im Schwarm Raubfische verwirren, sollen weiterführende Untersuchungen klären.

Eine enge Symbiose

Anatomische Untersuchungen, die die Forscher an Dünnschnitten der Leuchtorgane lumineszenter und nicht lumineszenter Fische durchführten, zeigen deutliche Unterschiede in der makroskopischen und mikroskopischen Struktur: Während die Leuchtorgane lumineszenter Fische dicht gepackte und geordnete Tubuli enthalten, in denen die leuchtenden Bakterien leben, bilden sich nach dem Erlöschen der Leuchtorgane und dem Verlust der Bakterien Löcher in der Tubulusstruktur. Diese strukturelle Änderung nach dem Verlust der Lumineszenz weist auf die enge Symbiose zwischen dem Fisch und den Bakterien hin. Der Verlust der Lumineszenz kommt durch einen Nahrungsmangel zustande.

Hintergrund Biolumineszenz

Die Produktion von Licht durch Organismen ist in der Natur weit verbreitet. Die weitaus meisten Vertreter lumineszenter Organismen kommen in marinen Lebensräumen vor und lassen sich in vielen systematischen Gruppen finden. Unter den Tieren der Tiefsee sind rund 90 Prozent biolumineszent. Unter den Wirbeltieren zeigen nur die Fische Biolumineszenz. Fische besitzen entweder Leuchtorgane, in denen sie selbst Licht produzieren, oder sie beherbergen symbiontische Bakterien, die das Licht aussenden.

Das Licht kann zur Kommunikation, zum Anlocken von Beuteorganismen oder zur Verteidigung genutzt werden – die genaue Funktion ist in vielen Fällen unklar und bei Tiefseeorganismen schwierig zu untersuchen. „Durch die enormen Druckunterschiede lassen sich die Fische kaum unbeschadet an die Oberfläche bringen“, so Stefan Herlitze und Jens Hellinger. Der Blitzlichtfisch Anomalops katoptron ist eine Ausnahme. Er lebt in verhältnismäßig flachen Gewässern und lässt sich daher im Aquarium halten.

Originalveröffentlichung

Jens Hellinger, Peter Jägers, Marcel Donner, Franziska Sutt, Melanie D. Mark, Budiono Senen, Ralph Tollrian und Stefan Herlitze: The Flashlight Fish Anomalops katoptron Uses Bioluminescent Light to Detect Prey in the Dark, in: Plos One, 2017, DOI: 10.1371/journal.pone.0170489, http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0170489

Pressekontakt

Prof. Dr. Stefan Herlitze
Allgemeine Zoologie und Neurobiologie
Ruhr-Universität Bochum
Tel.: 0234 32 24363
E-Mail: stefan.herzlitze@rub.de
http://www.ruhr-uni-bochum.de/neurobiol/index.html.de

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0170489 – Originalveröffentlichung

Media Contact

Meike Drießen idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer