Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Farbspiele des Tintenfischs

06.08.2014

Max-Planck-Forscher untersuchen die Farbwellen von Metasepia tullbergi

Manche Kopffüßler sind Meister des Farbspiels: Sie können nicht nur ihre Hautfarbe an die unmittelbare Umgebung anpassen und sich so vor Feinden tarnen. Sie produzieren auch über ihren Körper wandernde Farbwellen, beispielsweise beim Paarungs- und Jagdverhalten. Was die Tiere mit diesen dynamischen Mustern ausdrücken wollen, ist bislang noch unbekannt. Wissenschaftler vom Max-Planck-Institut für Hirnforschung in Frankfurt haben nun mit Metasepia tullbergi eine Tintenfisch-Art entdeckt, an der sich die Entstehung der Farbwellen gut untersuchen lässt. Sie haben dabei wichtige Eigenschaften der Wellen analysiert und können dadurch auf mögliche zugrunde liegende Nervenzell-Netzwerke schließen.


Der Tintenfisch Metasepia tullbergi ist nicht nur bunt, er kann sogar Farbwellen auf seiner Haut erzeugen.

© Stephan Junek


Metasepia tullbergi macht seinem englischen Namen alle Ehre: "Paintpot Cuttlefish" oder Farbtopf-Tintenfisch.

© Stephan Junek

Die zu den Tintenfischen gehörenden Kalmare, Kraken und Sepien können ihre Farbe innerhalb kürzester Zeit verändern. Ihre Haut enthält Millionen elastischer Pigmentzellen, so genannter Chromatophoren, die von Muskelzellen umgeben sind. Ziehen sich die Muskeln zusammen, verkleinern sie die Pigmentzellen und die Färbung verschwindet. Entspannen sich die Muskeln, färbt sich die Haut an dieser Stelle. Auf diese Weise können die Tiere verschiedenste Farbmuster erzeugen, darunter auch dunkle Balken, die über die Mantelregion des Tieres laufen. Diese im Englischen auch „passing clouds“ genannten Farbwellen entstehen durch die Aktivierung vieler miteinander verschalteter Pigmentzellen.

Der Tintenfisch Metasepia tullbergi stammt aus tropischen Gewässern. Er hat sich als idealer Modellorganismus zur Untersuchung wellenförmiger Farbmuster herausgestellt, da er sich nur langsam bewegt und sehr häufig solche Muster produziert. Mit Hilfe von Hochgeschwindigkeitskameras, die bis zu 100 Bilder pro Sekunde aufnehmen, haben die Forscher des Max-Planck-Instituts für Hirnforschung auf jeder Körperhälfte vier Regionen des Tintenfisch-Mantels identifiziert. Die in den insgesamt acht Regionen gebildeten Farbwellen laufen in unterschiedlicher Richtung über den Körper und überqueren dabei nicht die Grenzen zu benachbarten Arealen. Metasepia kann diese Regionen auf unterschiedliche Weise miteinander kombinieren und so verschiedene Farbspiele erzeugen.

Die Ausbreitungsgeschwindigkeit der Wellen kann um den Faktor 6 variieren. Alle gleichzeitig produzierten Wellen sind jedoch gleich schnell. Die Wellenlänge stimmt ungefähr mit der Wegstrecke ihrer Ausbreitung überein, so dass normalerweise in jeder Region immer nur ein Balken erscheint. Gleichzeitig aktive Regionen sind zudem perfekt synchronisiert – die Balken erreichen also exakt zur selben Zeit die Grenze ihrer Region. Die Forscher haben darüber hinaus beobachtet, dass die Farbmuster an einer Stelle verschwinden und an anderer Stelle wieder auftauchen können. Dieser wie ein Blinken wirkende Effekt beruht auf einem kurzzeitigen Verblassen des Balkens. Die scheinbar verschwundene Welle läuft folglich unsichtbar weiter und taucht dann wieder auf.

Die Ergebnisse der Frankfurter Wissenschaftler deuten darauf hin, dass die Farbwellen nicht von den Nervenzellen im Mantel des Tintenfischs produziert werden, die die dortige Muskulatur steuern. Stattdessen sind wahrscheinlich übergeordnete Nervenzellen dafür verantwortlich und bilden so genannte Zentrale Mustergeneratoren.  Solche Netzwerke können rhythmische und damit wellenförmige Aktivität erzeugen.

„Drei Arten von Netzwerken sind in der Lage, Wellen hervorzurufen, wie sie über den Körper von Metasepia tullbergi laufen. Aufgrund der beobachteten Eigenschaften der Farbmuster können wir eines der möglichen Netzwerke ausschließen“, erklärt Gilles Laurent, Direktor am Max-Planck-Institut in Frankfurt. Welchen der beiden verbleibenden Schaltkreise der Tintenfisch tatsächlich besitzt, können die Forscher anhand der Verhaltensuntersuchungen nicht bestimmen. Sobald aber weitere Analysen auf ein bestimmtes Netzwerk hindeuten, können die Ergebnisse helfen, seine Verschaltung und die biophysikalischen Eigenschaften aufzudecken.

Ansprechpartner 

Prof. Gilles Laurent

Max-Planck-Institut für Hirnforschung, Frankfurt am Main

Telefon: +49 69 850033-2001
Fax: +49 69 850033-2102

 

Originalpublikation

 
Andres Laan, Tamar Gutnick, Michael J. Kuba, and Gilles Laurent
Behavioral analysis of cuttlefish traveling waves and its implications for neural control
Current Biology, 4 August 2014 (DOI: 10.1016/j.cub.2014.06.027)

Prof. Gilles Laurent | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8330866/farbwellen_tintenfisch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ein Holodeck für Fliegen, Fische und Mäuse
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Wie Pflanzen ihr Gedächtnis vererben
21.08.2017 | Gregor Mendel Institut für Molekulare Pflanzenbiologie (GMI)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik