Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Farbspiele des Tintenfischs

06.08.2014

Max-Planck-Forscher untersuchen die Farbwellen von Metasepia tullbergi

Manche Kopffüßler sind Meister des Farbspiels: Sie können nicht nur ihre Hautfarbe an die unmittelbare Umgebung anpassen und sich so vor Feinden tarnen. Sie produzieren auch über ihren Körper wandernde Farbwellen, beispielsweise beim Paarungs- und Jagdverhalten. Was die Tiere mit diesen dynamischen Mustern ausdrücken wollen, ist bislang noch unbekannt. Wissenschaftler vom Max-Planck-Institut für Hirnforschung in Frankfurt haben nun mit Metasepia tullbergi eine Tintenfisch-Art entdeckt, an der sich die Entstehung der Farbwellen gut untersuchen lässt. Sie haben dabei wichtige Eigenschaften der Wellen analysiert und können dadurch auf mögliche zugrunde liegende Nervenzell-Netzwerke schließen.


Der Tintenfisch Metasepia tullbergi ist nicht nur bunt, er kann sogar Farbwellen auf seiner Haut erzeugen.

© Stephan Junek


Metasepia tullbergi macht seinem englischen Namen alle Ehre: "Paintpot Cuttlefish" oder Farbtopf-Tintenfisch.

© Stephan Junek

Die zu den Tintenfischen gehörenden Kalmare, Kraken und Sepien können ihre Farbe innerhalb kürzester Zeit verändern. Ihre Haut enthält Millionen elastischer Pigmentzellen, so genannter Chromatophoren, die von Muskelzellen umgeben sind. Ziehen sich die Muskeln zusammen, verkleinern sie die Pigmentzellen und die Färbung verschwindet. Entspannen sich die Muskeln, färbt sich die Haut an dieser Stelle. Auf diese Weise können die Tiere verschiedenste Farbmuster erzeugen, darunter auch dunkle Balken, die über die Mantelregion des Tieres laufen. Diese im Englischen auch „passing clouds“ genannten Farbwellen entstehen durch die Aktivierung vieler miteinander verschalteter Pigmentzellen.

Der Tintenfisch Metasepia tullbergi stammt aus tropischen Gewässern. Er hat sich als idealer Modellorganismus zur Untersuchung wellenförmiger Farbmuster herausgestellt, da er sich nur langsam bewegt und sehr häufig solche Muster produziert. Mit Hilfe von Hochgeschwindigkeitskameras, die bis zu 100 Bilder pro Sekunde aufnehmen, haben die Forscher des Max-Planck-Instituts für Hirnforschung auf jeder Körperhälfte vier Regionen des Tintenfisch-Mantels identifiziert. Die in den insgesamt acht Regionen gebildeten Farbwellen laufen in unterschiedlicher Richtung über den Körper und überqueren dabei nicht die Grenzen zu benachbarten Arealen. Metasepia kann diese Regionen auf unterschiedliche Weise miteinander kombinieren und so verschiedene Farbspiele erzeugen.

Die Ausbreitungsgeschwindigkeit der Wellen kann um den Faktor 6 variieren. Alle gleichzeitig produzierten Wellen sind jedoch gleich schnell. Die Wellenlänge stimmt ungefähr mit der Wegstrecke ihrer Ausbreitung überein, so dass normalerweise in jeder Region immer nur ein Balken erscheint. Gleichzeitig aktive Regionen sind zudem perfekt synchronisiert – die Balken erreichen also exakt zur selben Zeit die Grenze ihrer Region. Die Forscher haben darüber hinaus beobachtet, dass die Farbmuster an einer Stelle verschwinden und an anderer Stelle wieder auftauchen können. Dieser wie ein Blinken wirkende Effekt beruht auf einem kurzzeitigen Verblassen des Balkens. Die scheinbar verschwundene Welle läuft folglich unsichtbar weiter und taucht dann wieder auf.

Die Ergebnisse der Frankfurter Wissenschaftler deuten darauf hin, dass die Farbwellen nicht von den Nervenzellen im Mantel des Tintenfischs produziert werden, die die dortige Muskulatur steuern. Stattdessen sind wahrscheinlich übergeordnete Nervenzellen dafür verantwortlich und bilden so genannte Zentrale Mustergeneratoren.  Solche Netzwerke können rhythmische und damit wellenförmige Aktivität erzeugen.

„Drei Arten von Netzwerken sind in der Lage, Wellen hervorzurufen, wie sie über den Körper von Metasepia tullbergi laufen. Aufgrund der beobachteten Eigenschaften der Farbmuster können wir eines der möglichen Netzwerke ausschließen“, erklärt Gilles Laurent, Direktor am Max-Planck-Institut in Frankfurt. Welchen der beiden verbleibenden Schaltkreise der Tintenfisch tatsächlich besitzt, können die Forscher anhand der Verhaltensuntersuchungen nicht bestimmen. Sobald aber weitere Analysen auf ein bestimmtes Netzwerk hindeuten, können die Ergebnisse helfen, seine Verschaltung und die biophysikalischen Eigenschaften aufzudecken.

Ansprechpartner 

Prof. Gilles Laurent

Max-Planck-Institut für Hirnforschung, Frankfurt am Main

Telefon: +49 69 850033-2001
Fax: +49 69 850033-2102

 

Originalpublikation

 
Andres Laan, Tamar Gutnick, Michael J. Kuba, and Gilles Laurent
Behavioral analysis of cuttlefish traveling waves and its implications for neural control
Current Biology, 4 August 2014 (DOI: 10.1016/j.cub.2014.06.027)

Prof. Gilles Laurent | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8330866/farbwellen_tintenfisch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscherteam der Universität Bremen untersucht Korallenbleiche
24.04.2017 | Universität Bremen

nachricht Feinste organische Partikel in der Atmosphäre sind häufiger glasartig als flüssige Öltröpfchen
21.04.2017 | Max-Planck-Institut für Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Projekt CeGlaFlex: Hauchdünne, bruchsichere und biegsame Keramik und Gläser

24.04.2017 | Verfahrenstechnologie

Innovationspreis 2017 der Deutschen Hochschulmedizin e.V.

24.04.2017 | Förderungen Preise

Konfetti im Gehirn: Steuerung wichtiger Immunzellen bei Hirnkrankheiten geklärt

24.04.2017 | Medizin Gesundheit