Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Entstehung der Falten in der Hirnoberfläche

05.05.2017

Falten im Gehirn vergrößern die Oberfläche bieten zum Beispiel mehr Platz für Funktionen wie Denken und Handeln. Es gibt jedoch auch Säugetiere mit glatter Hirnoberfläche. Nun haben Wissenschaftler des Max-Planck-Instituts für Neurobiologie einen bisher unbekannten Mechanismus der Hirnfaltung entdeckt. Junge Nervenzellen, die während der Entwicklung eines Gehirns mit glatter Oberfläche zur Hirnrinde wandern, besitzen an ihrer Zelloberfläche sogenannte FLRT-Rezeptoren. Der so bedingte Zell-Zusammenhalt und das gleichmäßigere Wanderverhalten begünstigen eine glatte Hirnoberfläche. Das stark gefurchte menschliche Gehirn besitzt im Vergleich zum glatten Mausgehirn deutlich weniger FLRTs.

Das menschliche Gehirn hat viele Rillen und Furchen, wodurch die Hirnoberfläche im Vergleich zu einem glatten Gehirn um ein Vielfaches vergrößert wird. Doch nicht nur der Mensch legt sein Gehirn in Falten. Schon das vor rund 200 Millionen Jahren lebende Ur-Säugetier besaß wahrscheinlich ein faltiges Gehirn. Im Laufe der Evolution verloren jedoch verschiedene Tierarten ihre Hirnfalten wieder. So ist die Hirnoberfläche zum Beispiel von Mäusen und Ratten glatt.


Ohne Adhäsions-Moleküle der FLRT-Familie bildet die normalerweise glatte Hirnrinde der Maus Falten aus, die in Aufbau und Struktur dem menschlichen Gehirn entsprechen.

MPI für Neurobiologie / del Toro, Cederfjäll

„Der evolutionäre Erfolg dieser und anderer Tierarten mit glatten Gehirnen zeigt, dass ein ungefurchtes Gehirn nicht unbedingt von Nachteil ist und für diese Arten passt“, erklärt Rüdiger Klein, Direktor am Max-Planck-Institut für Neurobiologie. „Uns hat interessiert, wie die Hirnfaltung überhaupt zustande kommt.“

Bisher waren Wissenschaftler davon ausgegangen, dass es in gefalteten Gehirnen während der Entwicklung zu einer Vermehrung von Vorläuferzellen kommt. Diese produzieren eine größere Anzahl junger Nervenzellen, die dann zur Hirnrinde wandern. Dort drängen somit sehr viele Zellen in diese Zellschicht. Verschiedene Mechanismen, darunter auch der starre Schädelknochen, verhindern jedoch, dass sich die Hirnrinde – ähnlich wie ein Luftballon – einfach ausdehnt.

Um den Überschuss an Zellen unterzubringen, muss sich die Hirnrinde daher falten. Studien an Mäusen mit künstlich erhöhter Zellmenge zeigten jedoch, dass dieser Prozess nicht ausreicht, um die Hirnrinde zu falten: die Tiere hatten zwar eine dickere, ansonsten jedoch glatte Hirnrinde. „Da musste also noch etwas sein, was die Faltung des Gehirns in Mäusen verhindert“, so Klein zum Ausgangspunkt der Studie, die nun im Fachjournal Cell erschienen ist.

Im sich entwickelnden Mausgehirn wandern die jungen Nervenzellen langsam und geordnet in den Außenbereich des Gehirns, wo sie sich zu einer gleichmäßigen und glatten äußeren Schicht aufreihen. In einer früheren Studie konnten die Wissenschaftler um Rüdiger Klein zeigen, dass das Molekül FLRT3 (gesprochen Flirt-3) wandernde Nervenzellen aneinanderhaften lässt und so eine geordnete Bewegung unterstützt.

„Die Vermutung lag daher nahe, dass FLRTs eine Rolle bei der unterschiedlichen Zellverteilung in gefalteten und glatten Gehirnen spielen können“, so Klein. In ihrer neuen Studie untersuchten die Forscher daher Mäuse, deren Vorläuferzellen weder FLRT3 noch das verwandte FLRT1 besaßen. Diese Tiere entwickelten ein Gehirn, das deutliche Falten aufwies, obwohl sich die Zahl der Vorläuferzellen nicht verändert hatte.

Eine Kombination aus Laboruntersuchungen und Computersimulationen zeigte, wie das Mausgehirn seine Falten entwickelte. Durch das Fehlen von FLRT1/3 hafteten die Vorläuferzellen nicht mehr so stark aneinander. „So konnten abstoßende Mechanismen der Nachbarzellen wahrscheinlich die Überhand gewinnen und die Vorläuferzellen in einzelne Gruppen drängen“, erklärt Daniel del Toro, einer der beiden Erstautoren der Studie.

Innerhalb dieser Zellgruppen konnten sich die Vorläuferzellen freier bewegen und dadurch teilweise auch schneller in den äußeren Hirnbereich wandern. Als Ergebnis dieses veränderten Wanderverhaltens kamen die Vorläuferzellen zu früh in der Hirnrinde an und verteilten sich nicht mehr gleichmäßig. Die Wissenschaftler vermuten, dass das entstehende Gedränge in der obersten Zellschicht den Druck in dieser Schicht erhöhte, der dann durch Furchenbildung aufgelöst wurde.

„Die fehlenden Anziehungskräfte zwischen den Nervenzellen machten die Hirnrinde weicher und formbarer, wodurch die Faltenbildung vermutlich zusätzlich begünstigt wurde“, ergänzt Tobias Ruff, der Co-Erstautor.

Mit ihrer Studie haben die Wissenschaftler erstmals gezeigt, dass das Aneinanderhaften von wandernden Nervenzellen die Hirnfaltung entscheidend beeinflusst und dass die FLRT-Rezeptoren dabei eine maßgebliche Rolle spielen.

Zusammen mit ihren spanischen Kollegen vom neurowissenschaftlichen Institut aus Alicante, Spanien, konnten die Max-Planck Forscher zeigen, dass sowohl beim Menschen als auch im Frettchen, die beide ein gefurchtes Gehirn haben, die FLRT1/3-Mengen deutlich niedriger sind als im glatten Mausgehirn. „Es ist daher wahrscheinlich, dass FLRTs auch die Faltenbildung unseres Gehirns beeinflussen“, vermutet Rüdiger Klein. Die Ergebnisse sind somit ein Ausgangspunkt für weitere Studien zur Faltung und Fehlfaltung des Säugetiergehirns.

ORIGINALVERÖFFENTLICHUNG
Daniel del Toro, Tobias Ruff, Erik Cederfjäll, Anna Villalba, Gönül Seyit-Bremer, Víctor Borrell, Rüdiger Klein
Regulation of cerebral cortex folding by controlling neuronal migration via FLRT adhesion molecules Cell, 04. Mai 2017

KONTAKT
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 - 8578 3514
E-Mail: merker@neuro.mpg.de

Prof. Dr. Rüdiger Klein
Abteilung "Moleküle – Signale – Entwicklung"
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 - 8578 3150
Email: rklein@neuro.mpg.de

Weitere Informationen:

http://www.neuro.mpg.de/klein - Webseite von Prof. Rüdiger Klein am MPI für Neurobiolgie

Dr. Stefanie Merker | Max-Planck-Institut für Neurobiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Genetische Vielfalt schützt vor Krankheiten
23.05.2018 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt
22.05.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Im Focus: Achema 2018: Neues Kamerasystem überwacht Destillation und hilft beim Energiesparen

Um chemische Gemische in ihre Einzelbestandteile aufzutrennen, ist in der Industrie die energieaufwendige Destillation gängig, etwa bei der Raffinerie von Rohöl. Forscher der Technischen Universität Kaiserslautern (TUK) entwickeln ein Kamerasystem, das diesen Prozess überwacht. Dabei misst es, ob es zu einer starken Tropfenbildung kommt, was sich negativ auf die Trennung der Komponenten auswirken kann. Die Technik könnte hier künftig automatisch gegensteuern, wenn sich Messwerte ändern. So ließe sich auch Energie einsparen. Auf der Prozesstechnik-Messe Achema in Frankfurt stellen sie die Technik vom 11. bis 15. Juni am Forschungsstand des Landes Rheinland-Pfalz (Halle 9.2, Stand A86a) vor.

Bei der Destillation werden Flüssigkeiten durch Verdampfen und darauffolgende Kondensation des Dampfes in ihre Bestandteile getrennt. Ein bekanntes Beispiel...

Im Focus: Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

Wie verleiht man Zellen neue Eigenschaften ohne ihren Stoffwechsel zu behindern? Ein Team der Technischen Universität München (TUM) und des Helmholtz Zentrums München veränderte Säugetierzellen so, dass sie künstliche Kompartimente bildeten, in denen räumlich abgesondert Reaktionen ablaufen konnten. Diese machten die Zellen tief im Gewebe sichtbar und mittels magnetischer Felder manipulierbar.

Prof. Gil Westmeyer, Professor für Molekulare Bildgebung an der TUM und Leiter einer Forschungsgruppe am Helmholtz Zentrum München, und sein Team haben dies...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Rotierende Rugbybälle unter den massereichsten Galaxien

23.05.2018 | Physik Astronomie

Invasive Quallen: Strömungen als Ausbreitungsmotor

23.05.2018 | Ökologie Umwelt- Naturschutz

Matrix-Theorie als Ursprung von Raumzeit und Kosmologie

23.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics