Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Entdeckung der Cyanatfresser

30.07.2015

Die Aktivität Ammoniak- und Nitrit-oxidierender Mikroben ist für den globalen Stickstoffkreislauf und damit für das Leben auf unserer Erde von wesentlicher Bedeutung. In einer im Fachmagazin "Nature" erschienenen Arbeit berichten ForscherInnen um Michael Wagner vom Department für Mikrobiologie und Ökosystemforschung der Universität Wien, dass diese Mikroben als erste bekannte Lebewesen überhaupt auch ausschließlich von Cyanat als Energiequelle leben können und manche sich dazu sogar gegenseitig füttern. Somit wurden ein neuer Umweltfaktor und ein neues Interaktionsmuster entdeckt, welche für die Verbreitung und Aktivität dieser Mikroorganismen eine wichtige Rolle spielen könnten.

Der globale Stickstoffkreislauf ist von zentraler Bedeutung für alles Leben auf der Erde und wird vor allem durch vielfältige Stoffwechselleistungen von Mikroorganismen (Bakterien und Archaeen) am Laufen gehalten.


Cyanat-abbauendes Konsortium aus Ammoniak- (rot) und Nitrit-oxidierenden Mikroben (grün). Die Mikrobengruppen wurden mit Hilfe der Fluoreszenz-In-Situ-Hybridisierung spezifisch angefärbt.

Copyright: Michael Wagner


Schematische Darstellung des Cyanatabbaus durch sich gegenseitig fütternde Ammoniak- und Nitrit-Oxidierende Mikroben.

Copyright: Michael Wagner

Um die wachsende Weltbevölkerung ernähren zu können werden in der industriellen Landwirtschaft enorme Mengen der Stickstoffverbindungen Ammonium und Harnstoff als Dünger eingesetzt, von denen aber nur ein Bruchteil von den Pflanzen aufgenommen wird. Der Rest gelangt ins Grundwasser, in Seen, Flüsse und die Ozeane und führt dort zu massiven Problemen bis hin zur Ausbildung von Todeszonen.

Somit greift der Mensch in den Stickstoffkreislauf auf ähnlich dramatische Weise wie in den Kohlenstoffkreislauf ein. Um die Folgen des Einflusses des Menschen auf den ökologisch wichtigen Stickstoffkreislauf besser vorhersagen zu können, ist es zwingend notwendig, die daran beteiligten Mikroben und vor allem deren Stoffwechseleigenschaften genauer verstehen zu lernen.

Ammoniak- und Nitrit-oxidierende Mikroben spielen bei der Umwandlung von Stickstoffverbindungen in der Umwelt eine zentrale Rolle. Trotz der inzwischen bekannten Vielfalt dieser Lebewesen gingen Mikrobiologen bisher davon aus, dass Ammoniak-oxidierende Mikroben ausschließlich in Anwesenheit von Ammonium bzw. Harnstoff als Energiequelle wachsen können. Umso überraschender ist der heute von Michael Wagner und seinem Team veröffentlichte Befund, dass das Ammoniak-oxidierende Archaeon Nitrososphaera gargensis mit Cyanat als einziger Energiequelle wachsen kann.

"Wir haben es in jahrelanger Arbeit geschafft, diesen Organismus als Reinkultur im Labor zu züchten. Durch dessen Genomsequenzierung haben wir erste Hinweise erhalten, dass es mittels eines speziellen Enzyms Cyanat verwenden könnte, indem es dieses in Ammonium und Kohlendioxid umwandelt. Durch aufwändige physiologische Studien ist es uns nun gelungen, dies experimentell nachzuweisen", erläutert Marton Palatinszky, Erstautor der Studie.

Auf den ersten Blick überraschend war die Tatsache, dass viele andere Ammoniak-oxidierende Mikroben das für die Cyanatverwertung notwendige Enzym nicht besitzen, während alle bekannten Nitrit-Oxidierer dieses Enzym produzieren. Wagner und KollegInnen konnten zeigen, dass diesem unerwarteten Verteilungsmuster eine neuartige Interaktion zwischen Ammoniak- und Nitrit-oxidierenden Mikroben zugrunde liegt.

Normalerweise füttern die Ammoniak-oxidierenden Mikroben die Nitrit-oxidierenden Bakterien, indem sie Ammoniak zu Nitrit umwandeln, welches dann von den Nitrit-Oxidierern zu Nitrat umgesetzt wird. Die Nitrit-Oxidierer sind also von den Ammoniak-Oxidierern abhängig. Im Fall von Cyanat ist das anders: Die Nitrit-Oxidierer nehmen Cyanat aus der Umwelt auf und wandeln dieses in Ammonium um, das sie ausscheiden. Mit den Nitrit-Oxidierern zusammen lebende Ammoniak-Oxidierer können dann Ammonium in Nitrit umwandeln und dadurch wachsen. Das von ihnen ausgeschiedene Nitrit dient dann wiederum den Nitrit-Oxidierern als Energiequelle.

"So können also Ammoniak- und Nitrit-oxidierende Mikroben durch wechselseitiges Füttern gemeinsam auf Cyanat wachsen, auch wenn nur die Nitrit-oxidierenden Mikroben die genetische Ausstattung zur Cyanatverwertung besitzen", erklärt Holger Daims, Co-Autor der Studie. Im Gegensatz zu ihrer seit über hundert Jahren bekannten "normalen" Interaktion vollzieht hier also der Nitrit-Oxidierer den ersten Schritt.

Cyanat ist ein aus drei Atomen (Sauerstoff, Stickstoff und Kohlenstoff) bestehendes kleines Molekül, das in der Umwelt aus Harnstoff und durch den Abbau von Blausäure, die viele Pflanzen als Fraßschutz bilden, entsteht. Erst seit zwei Jahren steht eine Methode zur Verfügung, um Cyanat in den in der Umwelt relevanten niedrigen Konzentrationen nachzuweisen. Bislang wurden mit dieser Methode aber nur wenige Meerwasserproben untersucht, in denen prompt Cyanat gefunden wurde.

"Die genetische Grundausstattung zum Cyanatabbau durch Mikroben des Stickstoffkreislaufs ist in vielen Umweltproben vorhanden. Wir bestimmen nun die Cyanatkonzentrationen und Umsatzraten in Böden, Süß- und Meerwasserproben, um die quantitative Bedeutung der Cyanatfresser für den globalen Stickstoffkreislauf abschätzen zu können. Inzwischen haben wir erste Hinweise, dass auch die in den Sauerstoff-Minimum-Zonen der Meere eine wichtige Rolle spielenden anaeroben Ammonium-Oxidierer (Anammox) Cyanat verwenden können, so dass die Verbreitung und Bedeutung der Cyanatfresser sogar noch größer als in unserer Veröffentlichung angenommen sein könnte", so Wagner abschließend.

Publikation in "Nature":
Marton Palatinszky, Craig Herbold, Nico Jehmlich, Mario Pogoda, Ping Han, Martin von Bergen, Ilias Lagkouvardos, Søren M. Karst, Alexander Galushko, Hanna Koch, David Berry, Holger Daims und Michael Wagner: Cyanate as energy source for nitrifiers, in: Nature, 12 June 2015,
DOI: 10.1038/nature14856

Wissenschaftlicher Kontakt
Univ.-Prof. Mag. Dr. Michael Wagner
Department für Mikrobiologie und Ökosystemforschung
Universität Wien
1090 Wien, Althanstrasse 14
M +43-664-602 77-766 00
wagner@microbial-ecology.net

Rückfragehinweis
Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
alexandra.frey@univie.ac.at

Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 19 Fakultäten und Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.900 WissenschafterInnen. Die Universität Wien ist damit die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 92.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. http://univie.ac.at

1365 gegründet, feiert die Alma Mater Rudolphina Vindobonensis im Jahr 2015 ihr 650-jähriges Gründungsjubiläum mit einem vielfältigen Jahresprogramm – unterstützt von zahlreichen Sponsoren und Kooperationspartnern. Die Universität Wien bedankt sich dafür bei ihren Kooperationspartnern, insbesondere bei: Österreichische Post AG, Raiffeisen NÖ-Wien, Bundesministerium für Wissenschaft, Forschung und Wirtschaft, Stadt Wien, Industriellenvereinigung, Erste Bank, Vienna Insurance Group, voestalpine, ÖBB-Holding AG, Bundesimmobiliengesellschaft, Mondi. Medienpartner sind: ORF, Die Presse, Der Standard.

Weitere Informationen:

http://www.microbial-ecology.net
http://dmes.univie.ac.at

Stephan Brodicky | Universität Wien

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Schiff für die Fischerei- und Meeresforschung
22.03.2017 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mit voller Kraft auf Erregerjagd
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie