Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die digitale Penicillin-Produktion

26.03.2018

TU Wien und Sandoz GmbH gelang es, das komplexe Wachstumsverhalten der Organismen in der Penicillin-Produktion am Computer in Echtzeit zu simulieren. Dadurch lässt sich der Herstellungsprozess nun viel besser kontrollieren.

Seit Jahrtausenden macht man sich Mikroorganismen zu Nutze, um chemische Reaktionen ablaufen zu lassen – etwa beim Bierbrauen. Biochemische Verfahren sind allerdings recht kompliziert. Viele Reaktionen laufen gleichzeitig ab und beeinflussen einander, zahlreiche Parameter spielen eine Rolle, nicht alle von ihnen kann man direkt messen.


Bio-Reaktor an der TU Wien

TU Wien


Julian Kager im Labor

TU Wien

An der TU Wien arbeitet man daran, solche Prozesse trotz aller Schwierigkeiten im Detail zu untersuchen. In Kooperation mit dem Pharma-Hersteller Sandoz hat man nun einen Penicillin-Herstellungsprozess analysiert und am Computer umfassend nachgebildet.

So gelingt es, auch Parameter zu ermitteln, die gar nicht direkt gemessen werden können. Die Erkenntnisse daraus werden von Sandoz nun genutzt um permanent einen vollständigen Überblick über die Abläufe im Bioreaktor zu bewahren und für optimale Qualität zu sorgen.

Fundiertes Wissen statt Black Box

Manche chemische Reaktionen sind ganz einfach zu durchschauen: Wenn man Wasserstoff mit Sauerstoff verbrennt, entsteht Wasser – auf eindeutig vorhersagbare Weise, in exakt vorherberechenbarer Menge. Doch wie berechnet man, mit welcher Geschwindigkeit ein Pilz unter den sich ständig ändernden Bedingungen im Bioreaktor wächst und produziert?

„Lange Zeit betrachtete man solche Prozesse als Black Box, die man nicht wirklich verstehen kann, die man nur mit viel Erfahrung gut zu nutzen lernt“, sagt Prof. Christoph Herwig, der am Institut für Verfahrenstechnik, Umwelttechnik und technische Biowissenschaften der TU Wien die Forschungsgruppe für Bioprozess-Technologie leitet. „Unser Ansatz ist ein anderer: Wir wollen die chemischen Abläufe in einem Bioreaktor im Detail analysieren und die Gleichungen aufstellen, die diese Abläufe beschreiben.“ So entsteht ein mathematisches Modell, das die Abläufe im Bioreaktor genau abbildet.

„Viele Parameter, die für den Ablauf des Prozesses wichtig sind, kann man gar nicht direkt messen, etwa die Wachstumsrate der Mikroorganismen“, erklärt Julian Kager, der im Rahmen seiner Dissertation mit der Sandoz GmbH zusammenarbeitet. „Genau deshalb ist ein umfassendes mathematisches Modell so nützlich: Wir verwenden die Daten, die beim Herstellprozess in Echtzeit zugänglich sind – etwa die Konzentrationen verschiedener Substanzen im Bioreaktor, und nutzen unser Modell, um am Computer auszurechnen, in welchem Zustand sich der Prozess aktuell aller Wahrscheinlichkeit nach befindet.“ Die Parameter, die man nicht messen kann, lassen sich somit berechnen.

Das Rechenmodell kann dazu verwendet werden die Nährstoffversorgung der kultivierten Zellen während des laufenden Prozesses optimal einzustellen.

So kompliziert und vielschichtig wie der Bioprozess selbst ist auch das Gleichungssystem, das ihn mathematisch beschreibt. „Das Gleichungssystem beschreibt ein nichtlineares dynamisches System. Winzige Variationen der Anfangsbedingungen können große Auswirkungen haben“, erklärt Kager. „Daher kann man auch nicht einfach per Hand eine Lösung ausrechnen, man muss relativ aufwändige Computersimulationen durchführen, um das System zu beschreiben.“

Die Rechenmodelle und die Algorithmen, die an der TU Wien entwickelt wurden, wendet die Sandoz GmbH nun für ihren Penicillin-Herstellungsprozess an. „Wir freuen uns sehr, dass unsere Grundlagenforschung so rasch den Weg in die industrielle Anwendung gefunden hat, und dass unser Ansatz des biochemischen Modellierens nun dabei hilft, eine automatisierte Regelung des pharmazeutischen Produktionsprozesses zu ermöglichen“, sagt Julian Kager.

Originalpublikation: J.Kager, C. Herwig, I. Stelzer, Chemical Engineering Science 177, 234 (2018). https://www.sciencedirect.com/science/article/pii/S0009250917307388

Kontakt:
Dipl.-Ing. Julian Kager
Institut für Verfahrenstechnik, Umwelttechnik und technische Biowissenschaften
Technische Universität Wien
Gumpendorfer Straße 1a, 1060 Wien
julian.kager@tuwien.ac.at
T: +43-58801-166478

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Das Geheimnis der Sojabohne: Mainzer Forscher untersuchen Ölkörperchen in Sojabohnen
20.06.2018 | Max-Planck-Institut für Polymerforschung

nachricht Schlüsselmolekül des Alterns entdeckt
20.06.2018 | Deutsches Krebsforschungszentrum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungsnachrichten

Breitbandservices von DNS:NET erweitert

20.06.2018 | Unternehmensmeldung

Mit Parasiten infizierte Stichlinge beeinflussen Verhalten gesunder Artgenossen

20.06.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics