Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Blitzabwehr der Bakterien

01.07.2016

Dringen Bakterien in den Körper eines Menschen oder eines Tieres ein, werden sie vom Immunsystem als fremd erkannt. Daraufhin versuchen die Immunzellen, diese Fremdkörper zu beseitigen.

Wissenschaftler des Helmholtz-Zentrums für Infektionsforschung (HZI) in Braunschweig haben nun gemeinsam mit Kollegen der Universität Umeå in Schweden herausgefunden, wie es Bakterien der Gattung Yersinia schaffen, Immunzellen direkt beim ersten Kontakt abzutöten: Sie vervielfältigen die genetische Information für ihre krankmachenden Werkzeuge und schießen gleichzeitig Substanzen in die Immunzelle, die sie schnell inaktivieren und umbringen.


Die genetische Ausstattung ihres Virulenzplasmids ermöglicht es Bakterien der Gattung Yersinia, die Immunabwehr auszuschalten.

HZI/M. Rohde

Die Ergebnisse ihrer Kooperation veröffentlichten die Wissenschaftler jetzt im renommierten Fachjournal Science.

Bakterien der Gattung Yersinia können beim Menschen schwere Darmerkrankungen und auch die Pest auslösen. Die Erbinformation für Werkzeuge, die diese Bakterien erst gefährlich machen, tragen Yersinien auf einem gesonderten DNA-Molekül, dem Virulenzplasmid. Ohne diesen DNA-Ring, der unabhängig vom übrigen Erbmaterial in den Bakterien vorkommt, sind die Yersinien völlig harmlos.

Das Virulenzplasmid trägt unter anderem den Bauplan für eine molekulare Spritze, mit der die Bakterien Substanzen in die Wirtszellen schießen und zum Beispiel deren Tod einleiten können. Die Forscher wussten bereits, dass die Bakterien bei einer Infektion ihre molekularen Spritzen in größerer Zahl ausbilden, doch wie genau es dazu kommt, war bis jetzt unbekannt.

Um das Rätsel zu lösen, haben die Forscher um Abteilungsleiter Hans Wolf-Watz und Tomas Edgren von der Universität Umeå den Krankheitserreger Yersinia pseudotuberculosis in Kulturgefäßen angezogen und darin eine Infektion simuliert. Sie sequenzierten das gesamte genetische Material dieser aktivierten Bakterien und verglichen es mit ruhenden Bakterien.

Das Ergebnis: Im Fall der simulierten Infektion besitzen die Bakterien auf einmal vier Kopien ihres Virulenzplasmids, das im Ruhezustand nur ein- bis zweimal in jeder Zelle vorliegt. An dieser Stelle stiegen die HZI-Forscher um Petra Dersch, Leiterin der Abteilung Molekulare Infektionsbiologie, in das Projekt ein. Sie untersuchten an mit Yersinien infizierten Mäusen, wie es zu der erhöhten Kopienzahl des Plasmids im lebenden Organismus kommt.

„Die Bakterien sind erst dann richtig virulent, wenn sie vier Plasmidkopien enthalten“, sagt Dersch. „Das ist eine völlig neue Erkenntnis, und den Mechanismus dahinter konnten wir jetzt mithilfe neuester Sequenziertechnik am HZI aufklären.“

Aaron Nuss, Postdoktorand in Derschs Abteilung, isolierte mit einer sehr aufwendigen Methode aus den infizierten Mäusen die gesamten Abschriften der Bakterien-DNA und sequenzierte sie. Anhand dieser Abschriften, der sogenannten RNA, lässt sich feststellen, welche Gene gerade aktiv sind und zur Produktion von Proteinen herangezogen werden. Dabei fiel auf, dass unter anderem die Replikase – das Enzym, das das Plasmid vervielfältigt – bei einer Infektion verstärkt gebildet wird. Im Ruhezustand wird die Produktion dieses Enzyms von bestimmten Faktoren gedrosselt.

Beim Kontakt mit einer Immunzelle setzt jedoch ein gegensätzlicher Effekt ein: Die Bakterien beseitigen sofort die hemmenden Faktoren und bilden mehr Replikase, die das Virulenzplasmid vervielfältigt. Damit werfen die Yersinien ihre Abwehrmechanismen an, die die Immunzelle schließlich abtöten. „Dieses Programm starten die Yersinien vor allem beim Kontakt mit Immunzellen, um sich schnellstmöglich vor deren Angriff zu schützen“, sagt Petra Dersch. „Das kostet sie so viel Energie, dass sie vorübergehend sogar ihr Wachstum einstellen müssen.“

Die neuen Erkenntnisse sind das Ergebnis einer engen Kooperation: Hans Wolf-Watz hat im Frühjahr einen dreimonatigen Forschungsaufenthalt in Derschs Abteilung absolviert, Tomas Edgren kam für zwei Wochen ans HZI. Während dieser Zeit haben die Wissenschaftler gemeinsam einen großen Teil der Untersuchungen an den infizierten Mäusen durchgeführt. Die Veröffentlichung im Fachjournal Science ist allerdings kein Abschluss der Kooperation: „Wir möchten die Mechanismen der Yersinien-Infektion zusammen noch weiter aufklären, denn dahinter verbergen sich auch Angriffspunkte für mögliche Medikamente, die die Bakterien unschädlich machen könnten“, sagt Petra Dersch.

Originalpublikation:
Increased Plasmid Copy-number is Essential for Yersinia T3SS Function and Virulence: H. Wang, K. Avican, A. Fahlgren, S. Erttmann, A. M. Nuss, P. Dersch, M. Fallman, T. Edgren, H. Wolf-Watz. Science, 2016, DOI: 10.1126/science.aaf7501
Link: http://science.sciencemag.org/content/early/2016/06/29/science.aaf7501

Sie finden diese Pressemitteilung und Bildmaterial auch auf unserer Internetseite unter dem Link https://www.helmholtz-hzi.de/de/aktuelles/news/ansicht/article/complete/die_blit...

Über das Helmholtz-Zentrum für Infektionsforschung:
Am Helmholtz-Zentrum für Infektionsforschung (HZI) untersuchen Wissenschaftler die Mechanismen von Infektionen und ihrer Abwehr. Was Bakterien oder Viren zu Krankheitserregern macht: Das zu verstehen soll den Schlüssel zur Entwicklung neuer Medikamente und Impfstoffe liefern. http://www.helmholtz-hzi.de

Ihre Ansprechpartner:
Susanne Thiele, Pressesprecherin
Dr. Andreas Fischer, Wissenschaftsredakteur

Helmholtz-Zentrum für Infektionsforschung GmbH
Presse und Kommunikation
Inhoffenstraße 7
D-38124 Braunschweig

Tel.: 0531 6181-1404
Fax: 0531 6181-1499

Susanne Thiele | Helmholtz-Zentrum für Infektionsforschung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics