Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Aufregung im Zaum halten

18.04.2018

Mithilfe hochentwickelter Technologien überwacht das Labor von MDC-Forscher James Poulet die Aktivität einzelner sensorischer Nervenzellen in ihren Netzwerken im Gehirn. Das Team verfolgte hunderte Kommunikationsverläufe und entdeckte so, wie es einem einzigen Signal einer einzelnen Zelle gelingt, Aufmerksamkeit zu erregen.

Wenn wir wach sind, flutet eine unglaubliche Menge Sinneseindrücke das Gehirn. Dort werden sie gefiltert, um wichtige Signale vom sonstigen „Lärm“ zu unterscheiden. Wesentliche Schritte dieser Informationsverarbeitung finden im Neocortex statt, dessen schichtartige Struktur mit sechs übereinander gestapelten Computerservern vergleichbar ist.


Das Team um Poulet hat gezeigt, dass Pyramidenzellen einzelne Signale erzeugen, die PV-Interneurone aktivieren. Diese wiederum hemmen Pyramidenzellen, die den Prozess angestoßen haben

Bild: Jean-Sebastian Jouhanneau, MDC

Überall im Körper registrieren sensorische Nerven Informationen und übermitteln sie entlang ihrer drahtähnlichen Axone an spezifische Schichten dieser Struktur. Im Innern des Neocortex springen sie auf andere Nervenzellen über. Ist das Signal stark genug, erzeugen sie ein Aktionspotential und übermitteln es. Diese elektrochemische Ladung rast die Axone entlang in andere Schichten des Cortex und wird schließlich in weitere Regionen des Gehirns übertragen.

Auf seinem Weg kann das Signal von erregenden Neuronen – beispielsweise Pyramidenzellen (PYR) – verstärkt oder von hemmenden Neuronen – wie SST- oder PV-Zellen – gedämpft werden. Letzteres verhindert, dass sich ein Signal ausbreitet, bis es das System überlädt – was etwa bei Fällen von Epilepsie beobachtet werden kann.

Merkwürdigerweise feuern viele erregende Pyramidenzellen unregelmäßig, in vereinzelten Aktivitätsausbrüchen. Die Gruppe von Dr. James Poulet am MDC hat nun herausgefunden, wie es diesen ruhigen Nervenzellen gelingt, sich Gehör zu verschaffen. Ihre Arbeit erscheint in der aktuellen Ausgabe von Nature Communications.

Input- und Output-Messungen der Gesamtzelle

Um die Effekte einzelner durch PYR-Zellen verursachter „Spikes“ zu untersuchen, war es erforderlich, ihre Aktivitäten ebenso wie jene benachbarter PV und SST-Neuronen gewissermaßen zu „belauschen“. Sie lassen sich zwar anhand der Moleküle unterscheiden, die sie produzieren. Die Forscherinnen und Forscher hatten bisher jedoch kein Gesamtbild davon, wie sie miteinander interagieren, wenn sich die Signale durch den sensorischen Kortex bewegen.

„Messungen an der gesamten Zelle sind eine fortschrittliche Methode, die man bei lebenden Tieren wie genetisch veränderten Mäuse anwenden kann“, sagt Dr. Jean-Sebastian Jouanneau, Postdoktorand in Poulets Gruppe und einer der Erstautoren.

„Wir können sie nun bei spezifischen Nervenzellen nutzen, die wir zuvor optisch identifiziert haben. Diese einzigartige Herangehensweise ermöglicht es uns, einzelne Nervenzellen zu reizen und jene winzigen Schwankungen ihrer elektrischen Aktivität zu überwachen, die die Aktionspotentiale hervorrufen. Indem wir sie eine nach der anderen reizen und das Netzwerk „belauschen“, können wir überprüfen, ob die Zellen miteinander verbunden sind und den Effekt des Signals feststellen.“

Die Forscher haben das hunderte Male getan und mit der gleichzeitigen Überwachung von jeweils vier Nervenzellen in jedem Experiment einen Rekord gebrochen. Dr. Jens Kremkow, ehemaliges Mitglied der Forschungsgruppe und ebenfalls einer der Autoren, ermöglichte durch eine groß angelegte Analyse das Zusammenführen aller Daten.

Eine ruhige Stimme, durch die alles noch ruhiger wird

Die Analyse brachte einige überraschende Ergebnisse. Ein einziger „Spike“ durch eine PYR-Zelle rief keine Aktivität in den anderen PYR-Zellen oder den SST-Neuronen hervor, mit denen sie verbunden war. Völlig anders verhielt es sich bei den PV-Neuronen: Das einmalige Signal der PYR-Zelle ließ das PV-Neuron feuern – eine erstaunlich effiziente Reaktion.

Die Auswirkungen dieser Übertragung waren ebenso erstaunlich: „Das Signal, das die PV-Zelle produzierte, nachdem sie von der PYR-Zelle gereizt worden war, wurde an ihre Zielneuronen weitergeleitet und verhinderte, dass sie selbst Aktionspotentiale erzeugten“, sagt Poulet, der auch Mitglied des Exzellenzclusters Neurocure an der Charité ist. „Zu den Zielen gehörten PYR-Zellen – eben jene Art Zellen, von denen der Reiz ausgegangen war! Die Folge: Eine Situation, in der ein einziges Signal sämtliche Nachbarn zum Schweigen bringt.“

Es erinnert ein wenig an einen Seminarraum, in dem die Studierenden schwatzen und ihre Papiere hin und her schieben. Wenn ein Professor oder eine Professorin den Raum betritt und mit lauter Stimme zu sprechen beginnt, sprechen die Studis oft ebenfalls lauter, damit sie sich selbst weiterhin hören können. Wenn die Person aber sehr leise spricht, werden sie normalerweise rasch stiller und signalisieren vielleicht sogar ihren Nachbarn, ruhig zu sein – um zu hören, was gesagt wird.

„Diese Art der Signalhemmung kannten wir zwar bereits, nicht jedoch als Antwort auf einen einzigen Spike“, sagt Poulet. „Um diesen Effekt zu beobachten, war es notwendig, das Signal in einem intakten und aktiven Netzwerk zu untersuchen. Möglicherweise handelt es sich um einen Mechanismus, der dem Gehirn hilft, feine und doch wichtige Stimuli herauszufiltern, damit sie nicht im allgemeinen „Lärm“ untergehen.“

Jean-Sébastien Jouhanneau et al (2018): “Single synaptic inputs drive high-precision action potentials in parvalbumin expressing GABA-ergic cortical neurons in vivo”, Nature Communications. doi: 10.1038/s41467-018-03995-2

Über das Max-Delbrück-Centrum für Molekulare Medizin (MDC)

Das Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC) wurde 1992 in Berlin gegründet. Es ist nach dem deutsch-amerikanischen Physiker Max Delbrück benannt, dem 1969 der Nobelpreis für Physiologie und Medizin verliehen wurde. Aufgabe des MDC ist die Erforschung molekularer Mechanismen, um die Ursachen von Krankheiten zu verstehen und sie besser zu diagnostizieren, verhüten und wirksam bekämpfen zu können. Dabei kooperiert das MDC mit der Charité – Universitätsmedizin Berlin und dem Berlin Institute of Health (BIH) sowie mit nationalen Partnern, z.B. dem Deutschen Zentrum für Herz-Kreislauf-Forschung (DHZK), und zahlreichen internationalen Forschungseinrichtungen. Am MDC arbeiten mehr als 1.600 Beschäftigte und Gäste aus nahezu 60 Ländern; davon sind fast 1.300 in der Wissenschaft tätig. Es wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Berlin finanziert und ist Mitglied in der Helmholtz-Gemeinschaft deutscher Forschungszentren.

www.mdc-berlin.de 

Weitere Informationen:

https://www.mdc-berlin.de/de/poulet – Website der AG Poulet
http://dx.doi.org/10.1038/s41467-018-03995-2 – Originalpublikation bei Nature Communications

Annette Tuffs | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Licht zur Herstellung energiereicher Chemikalien nutzen
22.05.2018 | Friedrich-Schiller-Universität Jena

nachricht Junger Embryo verspeist gefährliche Zelle
22.05.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics