Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die „Arbeitsumgebung“ beeinflusst die Proteineigenschaften

03.07.2014

RESOLV: Hydratwasser als Vermittler zwischen Protein und Umgebung

Die Funktion von Proteinen, die in Zellen vielfältige Aufgaben erfüllen, wird häufig in wässrigen Pufferlösungen untersucht. Unklar ist aber, beispielsweise bei pharmazeutischen Studien, ob sie in diesen Lösungen genauso funktionieren wie in ihrer natürlichen Umgebung:


Schematische Darstellung des Faltungsgleichgewichts zwischen biologisch aktiver und denaturierter Struktur in verdünnter (links) und konzentrierter (rechts) Lösung.

RESOLV

Die Zellflüssigkeit ist dicht gepackt mit Biomolekülen, organischen und anorganischen Stoffen. Bochumer Forscher um Juniorprofessor Dr. Simon Ebbinghaus haben jetzt gezeigt, dass das Wasser, das die gelösten Substanzen im Zellinneren umgibt, eine entscheidende Rolle bei der Proteinstabilität spielt, die bisher oft vernachlässigt worden ist.

Über ihre Ergebnisse, die sie mit einfachen Modellsystemen und thermodynamischen Untersuchungen gewonnen haben, berichten die Forscher im Journal of the American Chemical Society (JACS). Die Ergebnisse entstammen einer Kooperation im Rahmen des Exzellenzclusters RESOLV. Sie wurden zudem mit einem Hot-Topic Posterpreis auf der diesjährigen Bunsentagung in Hamburg ausgezeichnet.

Arbeitsumgebung der Proteine ist zähflüssiger als Eiweiß

Proteine gehören zu den wichtigsten und meistuntersuchten Biomolekülen der biochemischen Forschung. Sie haben strukturelle Aufgaben und sind die molekularen Maschinen der Zelle, die chemische Reaktionen katalysieren, Stoffwechselprodukte transportieren und Signalstoffe erkennen. Fehler in der Proteinfunktion führen deshalb oft zu schweren Erkrankungen wie z.B. Huntington und Alzheimer.

Die natürliche Arbeitsumgebung der Proteine in der Zelle ist eine hoch-konzentrierte Lösung (zähflüssiger und konzentrierter als Eiweiß), die aus verschiedenen Makromolekülen sowie kleinen organischen und anorganischen Stoffen besteht. Um die Funktion von Proteinen mit modernen analytischen Methoden untersuchen zu können, werden sie gezielt aus dieser Umgebung herausgelöst und in verdünnte wässrige Lösungen gegeben. Oftmals ist jedoch unklar, inwieweit die experimentellen Ergebnisse dann noch die wirkliche Funktion in der zellulären Umgebung reflektieren.

Theorie: Proteine legen in der Enge „die Ellenbogen an“

Eine häufig verwendete Methode um den Effekt der dichtgepackten zellulären Umgebung auf Proteine vorherzusagen ist die „Excluded Volume“-Theorie. Sie lässt sich anschaulich anhand eines alltäglichen Phänomens verstehen. In einem vollen Aufzug oder einer vollen Straßenbahn versucht jeder den direkten Kontakt mit seinen Nachbarn zu vermeiden und eine möglichst kompakte Körperhaltung einzunehmen (z.B. durch Anlegen der Arme). Das Prinzip der gegenseitigen Abstoßung lässt sich nach der „Excluded Volume“-Theorie auf Proteine in dicht gedrängter zellulärer Umgebung anwenden. Sie nehmen eine kompakte Struktur ein. In der Regel ist ihr biologisch aktiver Zustand auch zugleich der kompakteste Zustand, weshalb die „Excluded Volume“-Theorie eine Stabilisierung des biologisch aktiven Zustands voraussagt.

Studie zeigt, dass mehr wirkt als nur gegenseitige Abstoßung

Mit Hilfe verschiedener Lösungsmittelzusätze wie Biomakromolekülen, Zuckern und Salzen haben die RUB-Forscher jetzt die unterschiedlichen zellulären Bedingungen imitiert und deren Einfluss auf das Modellprotein Ubiquitin analysiert. Dabei konnten sie zeigen, dass das Verhalten des Proteins nicht nur von der gegenseitigen Abstoßung zwischen Protein und Lösungsmittelzusatz bestimmt ist. Thermodynamische Studien halfen unterschiedliche Stabilisierungs- und Destabilisierungsmechanismen aufzudecken. Im Gegensatz zu der erwarteten sogenannten entropischen Stabilisierung – basierend auf dem „Excluded Volume“-Effekt – beobachteten die Forscher eine sogenannte enthalpische Stabilisierung von Ubiquitin in der Gegenwart von Makromolekülen, Zuckern und Salzen. Diese enthalpische Stabilisierung steht in direktem Zusammenhang mit der Verstärkung chemischer Bindungen des biologisch aktiven Zustands und lässt sich nicht über eine rein volumenbasierte kompaktere Gestalt des Proteins erklären.

Wasser als Mittler zwischen Protein und gelösten Substanzen

Die Forscher führen das enthalpische Stabilisierungsphänomen auf einen Wasser-vermittelten Prozess zurück: Protein und Lösungsmittelzusatz wechselwirken nicht direkt miteinander, jedoch führen die veränderten Wassereigenschaften im Hydratwasser der Lösungsmittelzusätze zu einer Optimierung von Wasserstoffbrückenbindungen im biologisch aktiven Zustand des Proteins. Die Arbeiten wurden durch das Rückkehrerprogramm des Ministeriums für Innovation, Wissenschaft und Forschung des Landes NRW, den Exzellenzclusters RESOLV und den Verband der Chemischen Industrie e.V. (VCI) gefördert.

Titelaufnahme

Michael Senske, Lisa Törk, Benjamin Born, Martina Havenith, Christian Herrmann, Simon Ebbinghaus (2014): Protein stabilization by macromolecular crowding through enthalpy rather than entropy. Journal of the American Chemical Society. J. Am. Chem. Soc., DOI: 10.1021/ja503205y

Weitere Informationen

Jun.-Prof. Dr. Simon Ebbinghaus, Lehrstuhl Physikalische Chemie II, NC 6/32, Tel. 0234/32-25533, E-Mail: Simon.Ebbinghaus@rub.de

Meike Drießen | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Berichte zu: Abstoßung Arbeitsumgebung Eiweiß Forschung Protein Proteine RESOLV Stabilisierung Ubiquitin Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität
25.04.2017 | Universität Bielefeld

nachricht Wehrhaft gegen aggressiven Sauerstoff - Metalloxid-Nickelschaum-Elektroden in der Wasseraufspaltung
25.04.2017 | Universität Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neuer Blue e+ Chiller von Rittal - Exakt regeln und effizient kühlen

25.04.2017 | HANNOVER MESSE

RWI/ISL-Containerumschlag-Index: Kräftiger Anstieg setzt sich fort

25.04.2017 | Wirtschaft Finanzen

Pharmacoscopy: Mikroskopie der nächsten Generation

25.04.2017 | Medizintechnik