Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Antenne der Zelle

30.01.2015

Göttinger Biophysiker entdecken unerwartete Eigenschaften bei sensorischen Antennen von Zellen

Ein internationales Forscherteam unter der Leitung der Universität Göttingen hat die mikromechanischen Eigenschaften von primären Zilien erforscht. Diese antennenähnlichen Organellen dienen vielen Arten von Zellen in höheren Lebewesen zur Erkennung von Umweltsignalen.


Schema von dem Verankern der Zilie in der Zelle. Dabei werden Kräfte von der Zelle auf die Zilie übertragen.

Grafik: Universität Göttingen


Mikroskopbild einer Zilie.

Foto: Universität Göttingen

Die Wissenschaftler der Göttinger Fakultät für Physik, der National Institutes of Health in Bethesda (USA) und des Vanderbilt Medical Centers in Nashville (USA) benutzten Lichtmikroskopie und optische Pinzetten zur Abbildung und Manipulation der Zilien an den Oberflächen lebender Zellen in Zellkulturen.

Dabei stellten sie überraschenderweise fest, dass die Antennen nicht nur passiv Signale empfangen, sondern sich auch aktiv orientieren und bewegen können. Die Ergebnisse sind in der Fachzeitschrift Proceedings of the National Academy of Sciences of the USA erschienen.

Primäre Zilien sind entwicklungsgeschichtlich alte Organellen, deren Funktion bisher nur unzulänglich aufgeklärt werden konnte. Im Gegensatz zu beweglichen Zilien und Flagellen, die zum Beispiel auf den Oberflächen menschlicher Lungenepithelzellen zum Abtransport von Staub und anderen Verunreinigungen dienen, besitzen sie keine Motorproteine, mit denen sie sich aktiv verformen könnten.

Deshalb glaubten Forscher bisher, dass sie ausschließlich passive Sensoren seien. Die neuen Messungen des Teams unter der Leitung von Prof. Dr. Christoph Schmidt vom III. Physikalischen Institut der Universität Göttingen haben aber gezeigt, dass die Zilien elastisch im Inneren der Zelle verankert sind, und dass sie sich keineswegs passiv verhalten. Da sie in das mechanisch sehr aktive Netzwerk des Zytoskeletts eingebettet sind, kann die Zelle mit Hilfe der Myosinmotoren, die Kräfte im Zytoskelett erzeugen, die Zilien bewegen und ausrichten.

„Die Zilien, die genau wie kleine Stabantennen aussehen, nehmen also nicht nur chemische und mechanische Signale aus der Umgebung auf, sondern fungieren auch als Sendeantennen, die Signale nach außen abgeben können“, so Prof. Schmidt. „Wozu diese aktive Funktion dient, ist noch nicht bekannt. Möglicherweise kalibrieren die Zellen durch die eigene Vibration der Antenne deren Empfindlichkeit gegen äußere mechanische Signale.”

Originalveröffentlichung: Christopher Battle et al. Intracellular and extracellular forces drive primary cilia movement. Proceedings of the National Academy of Sciences (USA) 2015. Doi: http://www.pnas.org/cgi/doi/10.1073/pnas.1421845112.

Hinweis an die Redaktionen:
Fotos zum Thema haben wir im Internet unter http://www.uni-goettingen.de/de/3240.html?cid=5049 zum Download bereitgestellt.

Kontaktadresse:
Prof. Dr. Christoph Schmidt
Georg-August-Universität Göttingen
Fakultät für Physik – III. Physikalisches Institut
Friedrich-Hund-Platz 1, 37077 Göttingen
Telefon (0551) 39-7740
E-Mail: christoph.schmidt@phys.uni-goettingen.de
Internet: http://www.dpi.physik.uni-goettingen.de/de/science/people/211r125.html

Weitere Informationen:

http://www.pnas.org/cgi/doi/10.1073/pnas.1421845112

Thomas Richter | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen