Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Ampel im Gehirn

10.02.2017

Forschungsgruppe liefert neue Einsichten zur Rolle von Teilbereichen des präfrontalen Cortex

Die Entscheidung, wann das Gehirn auf einen externen Reiz mit der Unterdrückung von Handlungsimpulsen reagiert und wann nicht, hängt ganz maßgeblich vom Gleichgewicht zwischen Arealen der Bewegungshemmung und -erregung im präfrontalen Cortex (PFC) ab.


Foto: Michael Veit

Neuronale Verknüpfungen an der Stirnseite der Großhirnrinde sorgen dafür, dass sich das Gehirn bewusst für oder gegen eine Reaktion entscheiden kann. Wie die einzelnen Areale des präfrontalen Cortex in diesem Prozess zusammenwirken und welche jeweilige Rolle ihnen dabei zukommt, war bisher unbekannt.

Ein internationales Team um die Freiburger Forscherin Stefanie Hardung aus der Arbeitsgruppe von Prof. Dr. Ilka Diester, einem Mitglied des Exzellenzclusters BrainLinks-BrainTools und des Bernstein Center Freiburg, hat jetzt die Rolle von fünf Unterregionen des präfrontalen Cortex in der Bewegungsentscheidung identifiziert. Die Ergebnisse wurden im Fachmagazin „Current Biology“ veröffentlicht. Die Studie könnte vor allem für die weitere Erforschung von Erkrankungen mit Impulskontrollstörung von Bedeutung sein.

„Die unterschiedlichen Areale des präfrontalen Cortex lassen sich am Beispiel einer Ampel erklären“, sagt Stefanie Hardung. „So sind bestimmte Unterregionen des PFC für die Hemmung von Reizen verantwortlich, andere wiederum für die Reaktionsvorbereitung oder für die Erregung.“

In einem Versuch trainierten die Forscherinnen und Forscher gentechnisch manipulierte Ratten auf reaktives und proaktives Stoppen: „Während sich reaktives Stoppen auf Situationen bezieht, in denen ein Tier durch ein externes Signal zum Stoppen aufgefordert wird, entwickelt sich proaktives Stoppen durch eine zielgerichtete subjektive Entscheidung“, so Hardung. Ratten, die einen Hebel festhalten, sollten diesen als Reaktion auf ein Signal loslassen.

Ein anderes Signal bedeutete, dass die Tiere den Hebel weiterhin betätigen sollten. Die Optogenetik erlaubte es der Forschungsgruppe, gentechnisch manipulierte Gehirnzellen mithilfe von Licht gezielt zu deaktivieren. So konnte das Team systematisch bestimmte Unterregionen des PFC der Versuchstiere abschalten und den Einfluss der jeweiligen Regionen auf die Bewegungsentscheidung testen. Die Optogenetik ermöglichte es der Gruppe außerdem, die Ergebnisse direkt mit dem Verhalten desselben Tieres zu vergleichen, wenn alle Areale intakt waren.

Die Deaktivierung bestimmter PFC-Areale veränderte die Leistungsfähigkeit deutlich: Eine Unterdrückung von Gebieten des infralimbischen Cortex (IL) oder des orbitofrontalen Cortex (OFC) behinderte die Fähigkeit der Ratten, auf externe Reize schnell zu reagieren. Wurde dagegen der prälimbische Cortex (PL) deaktiviert, reagierten die Ratten mehrheitlich vorzeitig. Wenn alle Areale intakt waren, beobachteten die Forscher mithilfe elektrophysiologischer Messmethoden, dass die neuronale Aktivität im PL kurz vor den vorzeitigen Reaktionen bedeutend zurückging.

Die Erkenntnisse der Forscher stützen die Annahme, dass der infralimbische und der prälimbische Cortex in der Steuerung proaktiver Bewegung als Reaktion auf externe Reize sowie der orbitofrontale Cortex in der Kontrolle von reaktivem Verhalten die Rolle von Gegenspielern einnehmen. Daher könnte ihre Studie als Ausgangspunkt für neue Ansätze in der Erforschung von Impulskontrollstörungen wie der Aufmerksamkeits-Defizit-Hyperaktivitäts-Störung (ADHS) oder Zwangsstörungen dienen.

„Die Optogenetik ist für die Versuchstiere weniger belastend als chirurgische oder pharmakologische Eingriffe“, erklärt Hartung. „Sie erlaubt es uns, unterschiedliche Hirnareale schnell und reversibel zu deaktivieren, ohne die Vernetzungen und Schaltungen zu beeinträchtigen. Daher bietet sich unser Tiermodell besonders an, um Impulskontrollstörungen zu erforschen.“

Kontakt:
Michael Veit
Bernstein Center Freiburg
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-9322
E-Mail: michael.veit@bcf.uni-freiburg.de

Levin Sottru
Exzellenzcluster BrainLinks-BrainTools
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-67721
E-Mail: sottru@blbt.uni-freiburg.de

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau
Weitere Informationen:
http://www.uni-freiburg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie