Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Diabetesforschung: Neuer Mechanismus zur Regulation des Insulin-Stoffwechsels gefunden

06.12.2016

Insulin stellt ein für alle Wirbeltiere lebensnotwendiges Hormon dar, da es unter anderem die Körperzellen anregt, Glukose aus dem Blut aufzunehmen und somit den Blutzuckerspiegel zu senken. Eine fehlerhafte Regulation des Insulin-Stoffwechsels führt zu vielfältigen Krankheiten, wobei Diabetes die weltweit größte Verbreitung aufweist. Basierend auf dieser hohen medizinischen Relevanz arbeiten international zahlreiche Forschergruppen daran, Faktoren zu identifizieren, die den Insulin-Stoffwechsel regulieren. So auch an der Universität Osnabrück.

Wie Biologen aus der Arbeitsgruppe Zoologie-Entwicklungsbiologie der Universität Osnabrück in Kooperation mit Wissenschaftlern der Universität Kopenhagen nun herausfanden, wird die Synthese von Insulinen in der Taufliege »Drosophila melanogaster« unter anderem von bestimmten Enzymen, den sogenannten Neprilysinen, reguliert.


Die Abbildung zeigt das isolierte Nervensystem einer Drosophila Larve. Farblich markiert sind die Kerne jener Zellen, die das untersuchte Enzym produzieren.

Foto: Universität Osnabrück

»Tiere, in denen mit Hilfe genetischer Methoden die Aktivität eines dieser Neprilysine künstlich erhöht, beziehungsweise reduziert wurde, wiesen charakteristische Merkmale von Diabetes auf«, berichtet Dr. Heiko Harten. Hierzu zählten beispielsweise eine erhöhte Glukose-Konzentration oder auch ein reduziertes Größenwachstum. Darüber hinaus war in diesen Tieren eine erheblich reduzierte Produktion von Insulinen festzustellen.

Um die physiologische Basis der beobachteten Effekte genauer zu verstehen, analysierten die Osnabrücker Wissenschaftler eine Vielzahl an möglichen Substraten des relevanten Neprilysins und fanden, dass das Enzym bestimmte Faktoren abbaut, die im aktiven Zustand die Produktion von Insulinen auslösen. Demzufolge sind Neprilysine dafür verantwortlich, die Konzentration von entsprechenden Faktoren optimal abzustimmen, um somit eine präzise Regulation der Insulin-Produktion zu gewährleisten.

Der Osnabrücker Entwicklungsbiologe Dr. Harten zu den Ergebnissen der Studie: »Während bereits viel über die Funktionsweise von Insulin bekannt ist, ist unser Wissen über die Art und Weise, wie die Herstellung beziehungsweise die Freisetzung dieses Hormons reguliert wird, noch unvollständig. Die erfolgreiche Identifizierung eines bislang unbekannten Mechanismus zur Regulation der Insulin-Synthese stellt daher einen wichtigen Schritt hin zu einem vollständigeren Verständnis dieser Prozesse dar. Es ist wahrscheinlich, dass eine vergleichbare Regulation auch in höheren Organismen, bis hin zum Menschen, zu finden ist«, so der Wissenschaftler.

Die Ergebnisse der durch den Sonderforschungsbereich 944 (Physiologie und Dynamik zellulärer Mikrokompartimente), den Fachbereich Biologie/Chemie der Universität Osnabrück (Programm zur Förderung von Nachwuchs-wissenschaftlern) sowie die FAZIT-Stiftung unterstützten Studie sind in der international renommierten Fachzeitschrift „eLife“ erschienen (http://dx.doi.org/10.7554/eLife.19430).

Weitere Informationen für die Medien:
Dr. Heiko Harten, Universität Osnabrück
Fachbereich Biologie/Chemie, Arbeitsgruppe Zoologie-Entwicklungsbiologie
Barbarastraße 11, 49076 Osnabrück
Tel.: +49 541 969 2858
E-Mail: heiko.harten@biologie.uni-osnabrueck.de

Dr. Utz Lederbogen | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-osnabrueck.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie