Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Deutsche und israelische Forscher gewinnen neue Erkenntnisse zur Proteinentsorgung

24.05.2013
Zellen haben ein ausgeklügeltes System, um defekte und nicht mehr benötigte Proteine kontrolliert zu entsorgen und so Schaden vom Körper abzuwenden.

Dr. Katrin Bagola und Prof. Thomas Sommer vom Max-Delbrück-Centrum (MDC) Berlin-Buch sowie Prof. Michael Glickman und Prof. Aaron Ciechanover vom Technion in Haifa, Israel, haben eine neue Funktion eines Enzyms entdeckt, das an diesem lebenswichtigen Prozess beteiligt ist. Danach ist ein Faktor, kurz Cue1, in Hefezellen nicht nur Rezeptor und Aktivator für einen Teil des Abbauapparats, sondern trägt dazu bei, das defekte Protein mit einem molekularen Stempel für den Abbau zu markieren (Molecular Cell, doi: org/10.1016/j.molcel.2013.04.005)*.

Proteine sind molekulare Maschinen in den Zellen eines Organismus. Verschiedenste Arten von Proteinen erfüllen viele unterschiedliche Funktionen: Sie transportieren Stoffe an ihren Bestimmungsort, wehren Krankheitserreger ab, ermöglichen chemische Reaktionen in der Zelle und vieles mehr. Viele Proteine werden an einer Zellorganelle, dem Endoplasmatischen Retikulum (ER) hergestellt, gefaltet und anschließend zu ihrem Bestimmungsort transportiert.

Einige Proteine werden nur für eine spezielle, zeitlich begrenzte Aufgabe benötigt und müssen danach wieder abgebaut werden. Aber bei der Herstellung und Faltung passieren auch häufig Fehler. Diese defekten Proteine sind nicht funktionsfähig und können dem Organismus sogar schaden. Auch sie müssen deshalb abgebaut werden.

Die Zellen haben daher ein ausgeklügeltes System, um fehlerhafte und nicht mehr benötigte Proteine zu entsorgen. Im ER gibt es einen speziellen Weg für den Abbau, die ER-assoziierte Proteindegradation (ERAD). Dieses System enthält zahlreiche Enzyme, die gemeinsam dafür sorgen, dass ein fehlerhaftes Protein mit einem molekularen Stempel, dem Molekül Ubiquitin, markiert wird. Dieser Prozess heißt Ubiquitinierung. Eine Kette von vier bis sechs Ubiquitinmolekülen dient als Abbau-Signal. Ein mit solch einer Kette markiertes Protein wird zur Häckselmaschine der Zelle, dem Proteasom, transportiert und dort in seine Bestandteile zerlegt.

Dieses Ubiquitin-Proteasom-System kommt in allen höheren Zellen vor, es ist ubiquitär. Es ist eines der komplexesten zellulären Systeme überhaupt und schützt den Körper vor schweren Krankheiten. Schadhafte Proteine, die diesem System entgehen, lösen schwere Erkrankungen wie Alzheimer, Parkinson, Chorea Huntington, Mukoviszidose oder Diabetes aus. Entdecker dieses Schutzprogramms ist Prof. Ciechanover. Er bekam dafür 2004 zusammen mit Prof. Avram Hershko (Technion) und Prof. Irwin Rose (University of California, Irvine, USA) den Chemienobelpreis.

Damit eine Ubiquitinkette an ein defektes Protein angehängt werden kann, müssen mehrere Enzyme zusammen arbeiten. Manche von ihnen sind in der Membran des ER verankert, andere, wie ein Enzym namens Ubc7, schwimmen frei im Inneren der Zelle. Ein Faktor, kurz Cue1 genannt, der selbst an die Membran gebunden ist, ist dafür zuständig, Ubc7 einzufangen und zu den Enzymen an der Membran zu bringen. Dafür hat er einen Bereich, der spezifisch an Ubc7 bindet. Ein weiterer Bereich des Faktors ist die sogenannte CUE-Domäne. Ihre Funktion haben Dr. Bagola und Prof. Sommer zusammen mit ihren Prof. Glickman und Prof. Ciechanover in Hefezellen näher untersucht.

Schicksalhafte Bindung
Bei der CUE-Domäne handelt es sich um eine Ubiquitin-bindende Domäne, kurz UBD. UBDs binden an bestimmte Ubiquitinmuster, können also beispielsweise erkennen, ob eines oder mehrere Ubiquitinmoleküle an ein Protein angehängt worden sind und wie die jeweiligen Ubiquitinmoleküle in Ketten miteinander verknüpft sind. Das Ubiquitinmuster bestimmt, welche UB-Domäne an welches Protein bindet und entscheidet so über das weitere Schicksal des Proteins.
Direkten Einfluss auf die Bildung von Molekülketten, die Signal geben für Proteinabbau
Die Forscher des MDC und des Technion, die schon seit vielen Jahren eng zusammenarbeiten, konnten zeigen, dass die CUE-Domäne des Faktors Cue1 an Ubiquitinketten bindet, die über einen bestimmten Baustein der einzelnen Ubiquitinmoleküle miteinander verknüpft sind und die als Abbau-Signal für Proteine dienen. Darüber hinaus fanden die Forscher heraus, dass die CUE-Domäne auch direkten Einfluss auf die Länge der Ubiquitinketten hat: Fehlte die CUE-Domäne oder war sie durch eine Mutation in ihrer Funktion eingeschränkt, entwickelten sich die Ubiquitinketten langsamer und wurden auch nicht so lang. Offenbar stabilisiert die CUE-Domäne die Ubiquitinketten, so dass weitere Ubiquitinmoleküle leichter angefügt werden können.

In Hefezellen stellten die Forscher fest, dass die CUE-Domäne von Cue1 auf diese Weise tatsächlich beeinflusst, wie effektiv das Proteindegradation System ERAD Proteine abbauen kann. Die Forscher vermuten, dass die CUE-Domäne speziell für die Entsorgung von Proteinen gebraucht wird, die an die Membran des ER gebunden sind. Auf den Abbau löslicher Proteine scheint sie dagegen keinen Einfluss zu haben. „Unsere Ergebnisse zeigen, dass eine Ubiquitin-bindende Domäne auch die Entstehung von Ubiquitinketten regulieren kann. Diese Funktion war bislang unbekannt“, erläutern die Forscher.

* Ubiquitin binding by a CUE domain regulates ubiquitin chain formation by ERAD E3 ligases.
Katrin Bagola1, Maximilian von Delbrück1, Gunnar Dittmar1, Martin Scheffner3, Inbal Ziv4, Michael H. Glickman4, Aaron Ciechanover5, and Thomas Sommer1, 2

1Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, D-13122 Berlin, Germany
2Humboldt-University zu Berlin, Institute for Biology, Invalidenstr.43, D-10115 Berlin, Germany
3Department of Biology, Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
4Department of Biology and 5Cancer and Vascular Biology Research Center, The Rappaport Faculty of Medicine and Polak Cancer Center, Technion-Israel Institute of Technology, Haifa 31096, Israel

Kontakt:
Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Weitere Informationen:
http://www.mdc-berlin.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen
12.12.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Undercover im Kampf gegen Tuberkulose
12.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit Quantenmechanik zu neuen Solarzellen: Forschungspreis für Bayreuther Physikerin

12.12.2017 | Förderungen Preise

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik