Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Deutsche und israelische Feuersalamander im Vergleich

21.12.2012
Forschungskooperation der Universität Bielefeld mit 1,6 Millionen Euro gefördert

In einer sich ständig verändernden Welt kann die Anpassung an neue Umweltbedingungen überlebenswichtig sein. Besonders Amphibien zeigen sich flexibel. Die Larven des einheimischen Feuersalamanders zum Beispiel haben die Fähigkeit entwickelt, sowohl in stehenden als auch in fließenden Gewässern aufwachsen zu können.


Als Larven leben Feuersalamander die ersten Monate ihres Lebens unter Wasser und atmen durch äußere Kiemen. Erst als Erwachsene gehen sie an Land und steigen auf Lungenatmung um.
Burkhard Thiesmeier


Ob sich dieser israelische Feuersalamander so entwickelt hat wie seine deutschen Verwandten? Dr. Sebastian Steinfartz von der Universität Bielefeld will es in Kooperation mit deutschen und israelischen Kollegen herausfinden.
Lior Blank

Biologen der Universität Bielefeld unter Leitung von Dr. Sebastian Steinfartz haben 2009 zeigen können, dass sich diese Anpassung auch auf Ebene ihrer Gene zeigt. Über tausende von Jahren entsteht auf diese Weise eine neue Art. Im Vergleich mit ihrer israelischen Schwesternart wollen nun die Bielefelder Biologen gemeinsam mit deutschen und israelischen Kollegen herausfinden, ob beide Arten sich gleichermaßen an ihre Umweltbedingungen angepasst haben. Ihre Forschung wird vom Bundesministerium für Bildung und Forschung von 2013 bis 2017 mit über 1,6 Millionen Euro gefördert.

Vor vielen Millionen Jahren gehörten sie noch zu einer Linie: der deutsche Feuersalamander (Salamandra salamandra) und seine israelische Schwesternart (Salamandra infraimmaculata). Mittlerweile leben sie weit voneinander entfernt, haben sich in unterschiedliche Arten aufgespalten und mussten sich doch an ähnliche Umweltbedingungen anpassen. Diese parallele, aber unabhängige Entwicklung machen sich die Wissenschaftler zu Nutze. Mit Hilfe von Experimenten, ökologischen Lebensraumcharakterisierungen und genomischen Analysen wollen sie herausfinden, ob an den ähnlichen Adaptationsprozessen bei beiden Arten dieselben oder ganz unterschiedliche Gene beteiligt sind. In Bielefeld sollen vor allem die experimentellen Ansätze mit den Larven und Genexpressionsanalysen stattfinden. Die Wissenschaftler erhoffen sich unter anderem Antwort auf die Frage, wie die genetischen Mechanismen von parallelen Lebensraumanpassungen aussehen können.

An der Forschung beteiligen sich Dr. Sebastian Steinfartz, Leiter der Arbeitsgruppe Molekulare Ökologie und Verhalten am Lehrstuhl für Verhaltensforschung der Universität Bielefeld, Dr. Arne Nolte vom Max-Planck Institut für Evolutionsbiologie (Plön) sowie Professor Dr. Leon Blaustein und Professor Dr. Alan Templeton (beide Universität Haifa, Israel).

Die Forschungsförderung ist Teil der Deutsch-Israelischen Projektkooperation (DIP). Das Exzellenzprogramm wurde 1997 vom Bundesministerium für Bildung und Forschung eingerichtet, um innovative deutsch-israelische Forschungsprojekte aus allen Wissenschaftsbereichen zu fördern. Jährlich werden bis zu vier Projektanträge ausgewählt und für bis zu fünf Jahre unterstützt.

Kontakt:
Dr. Sebastian Steinfartz, Universität Bielefeld
Fakultät für Biologie
Telefon: 0521 106-2653; E-Mail: sebastian.steinfartz@uni-bielefeld.de

Ingo Lohuis | idw
Weitere Informationen:
http://www.uni-bielefeld.de
http://www.uni-bielefeld.de/biologie/vhf/SF/Research_projects.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics