Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Detektivarbeit entschlüsselt Ursache für angeborenen Immundefekt

14.08.2015

Mutiertes Gen für verminderte Antikörperproduktion bei angeborenem variablen Immundefekt verantwortlich / Freiburger Forscher vom Centrum für Chronische Immundefizienz (CCI) publizieren internationale Studie in The American Journal of Human Genetics

Es war ein Krimi über mehrere Kontinente hinweg, der einen erfolgreichen Abschluss gefunden hat: Wissenschaftler aus Deutschland, den Niederlanden, Australien, Neuseeland und den USA haben erstmalig einen Mechanismus von Mutationen im NFKB1-Gen entdeckt, der dem variablen Immundefektsyndrom zugrunde liegt. 

Die gemeinsame Studie unter Erstautorenschaft von Dr. Manfred Fliegauf, Biologe am Centrum für Chronische Immundefizienz (CCI) des Universitätsklinikums Freiburg, erscheint in der gedruckten September-Ausgabe des Fachmagazins The American Journal of Human Genetics (AJHG). Online ist die Arbeit ab dem 13. August 2015 zu lesen.

Das variable Immundefektsyndrom (Common Variable Immunodeficiency, kurz CVID) umfasst eine heterogene Gruppe von Erkrankungen des Immunsystems. Die genetischen Ursachen für diesen angeborenen Immundefekt sind bei ungefähr 90 Prozent der Fälle noch unbekannt. CVID ist hauptsächlich durch die ungenügende Produktion von Antikörpern gekennzeichnet. Die betroffenen Patienten leiden meist an schweren und häufig wiederkehrenden bakteriellen Infektionen, vor allem der Atemwege.

Die Arbeitsgruppe um Dr. Fliegauf und Prof. Dr. Bodo Grimbacher, Wissenschaftlicher Direktor am Centrum für Chronische Immundefizienz (CCI) des Universitätsklinikums Freiburg, arbeitet an der Identifizierung von molekularen Mechanismen, die zur verminderten Antikörperproduktion führen. In der aktuellen Studie konnte mittels moderner Verfahren nachgewiesen werden, dass Mutationen in einem Gen namens NFKB1 (NF-kappaB1) für die Entstehung des variablen Immundefekts verantwortlich sind.

Die neuen Sequenziertechnologien ermöglichten es zu zeigen, dass in den Genen von CVID betroffenen Patienten eine von zwei Kopien (Allelen) dieses für viele Prozesse zentralen NFKB1-Gens zerstört ist. Das trügerische bei der Erforschung war, dass die zuerst entdeckte Mutation in einem nicht-kodierenden Bereich (Intron) liegt.

Bei Introns handelt es sich um Teilstücke der sogenannten messenger-RNA (mRNA), die den genetischen Code der DNA im Zellkern abliest und zu den Ribosomen transportiert, die anhand der Informationen Proteine herstellen. Beim Ablesen des DNA-Codes werden zunächst mRNA-Teilstränge gebildet, die aus Exons (kodierender Bereich) und Introns bestehen.

Nur die Exons enthalten wichtige Genabschnitte für die Proteinherstellung, daher werden bei der Verbindung der einzelnen Teilstränge die Introns entfernt und nur die Exons zu einem einzigen mRNA-Strang zusammengefügt. Die Mutation führt dazu, dass eines der Exons nicht mehr als solches erkannt wird, und dem kodierten Protein letztlich ein internes Fragment fehlt.

Das mutierte NF-kappaB1-Protein wird aber unmittelbar wieder eliminiert, kann also selbst eigentlich keinen Schaden anrichten. Das Resultat bezeichnet man als Haploinsuffizienz, da das Protein, das vom nicht-mutierten Allel produziert wird zwar völlig normal funktioniert, es aber insgesamt nur halb so viel davon gibt. Dies reicht im Fall von NF-kappaB1 eben nicht aus, um die Funktion des Immunsystems zu gewährleisten.

„Es war wahrlich Detektivarbeit herauszufinden, dass im NFKB1-Gen Mutationen vorkommen, die zu Haploinsuffizienz führen und dadurch für den variablen Immundefekt verantwortlich sind“, so Dr. Fliegauf. „Dass wir die Ergebnisse von verschiedenen Kontinenten in einer Publikation zusammenführen konnten, war für diese Studie und für das bessere Verständnis dieses Immundefekts ungemein wichtig.“

Auffällig für diese Form der Krankheitsentstehung durch Haploinsuffizienz, bei der immerhin 50 Prozent des normalen Genproduktes völlig funktionsfähig sind, war die sehr variable Ausprägung des Krankheitsbildes unter den Mutationsträgern innerhalb derselben Familie.

Während am CCI in Freiburg eine zweite CVID-Familie mit einer weiteren NFKB1-Mutation in einem nicht-kodierenden Gen-Abschnitt identifiziert wurde, konnte in Neuseeland bei einer dritten Familie mit der Erbkrankheit ein NFKB1-Defekt – hier jedoch in einem kodierenden Gen-Bereich – festgestellt werden. In allen drei Familien wirkt sich der NFKB1-Defekt in analoger Weise durch Haploinsuffizienz aus.

Titel der Originalpublikation: Haploinsufficiency of the NF-kB1 Subunit p50 in Common Variable Immunodeficiency

DOI: dx.doi.org/10.1016/j.ajhg.2015.07.008

Weitere Informationen:

http://dx.doi.org/10.1016/j.ajhg.2015.07.008
http://www.uniklinik-freiburg.de/cci
http://www.uniklinik-freiburg.de/presse/schwerpunkte/infektionen-und-immunsystem

Inga Schneider | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit