Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Designzellen produzieren erneuerbare Energie: RUB-Wissenschaftler starten Arbeit an EU-Projekt

28.01.2013
„CyanoFactory“ als Wasserstoff-Lieferant der Zukunft

Wasserstoff wäre ein idealer Energieträger, gäbe es da nicht einen Haken: Momentan wird er überwiegend aus fossilen Brennstoffen gewonnen. RUB-Forscher um Prof. Dr. Matthias Rögner vom Lehrstuhl Biochemie der Pflanzen arbeiten nun an einer umweltfreundlichen Alternative: Sie nutzen Blaualgen, um Wasserstoff aus Wasser zu gewinnen. Die Energie dazu liefert die Sonne – völlig kostenlos.


Kombination verschiedener Cyanobakterien-Mutanten, die zur Wasserstoffproduktion aus Wasser beitragen sollen, zur "Designzelle": Reduktion der Lichtsammelantennen (links), Erhöhung der Elektronentransportrate durch Entkopplung vom Protonentransport (Erhöhung der Protonenleitfähigkeit, Mitte) und Abzweigung von Elektronen zur Biowasserstoffproduktion auf Kosten der CO2-Fixierung (links).
Grafik: LS Biochemie der Pflanzen, RUB

Gemeinsam mit neun internationalen Kooperationspartnern aus Industrie und Forschung entwickeln die Wissenschaftler unter Federführung der Universität Uppsala solargetriebene Energiemodule, die sowohl kostengünstig als auch umweltfreundlich sind. Das Projekt „CyanoFactory“ läuft über drei Jahre und wird von der Europäischen Union mit insgesamt 3,7 Mio. Euro gefördert; davon gehen 425.000 Euro an die RUB.

Vorläuferprojekt „Biobatterie“

Die RUB-Arbeitsgruppe hat in dem vom BMBF geförderten Vorläuferprojekt bereits erfolgreich eine Art „Biobatterie“ entwickelt: ein halbkünstliches Modellsystem mit isolierten biologischen Komponenten wie den beiden Photosystemen, die Lichtenergie in chemische Energie umwandeln. Außerdem haben die Forscher begonnen, die Photosynthese von Blaualgen (Cyanobakterien) genetisch so zu verändern, dass sie für eine zukünftige lichtgetriebene Wasserstoffproduktion geeignet ist. Die hierfür benötigten sogenannten Hydrogenasen bauen Projektteilnehmer an der Universität Uppsala aus anderen Organismen in die Zellen ein, da Cyanobakterien kein leistungsfähiges Enzym zur Wasserstoffproduktion besitzen.

„Designzellen“ nach Maß: Synthetische Biologie

Im neuen EU-Projekt wollen die Wissenschaftler Cyanobakterien langfristig zu selbstreplizierenden „zellulären Fabriken“ für die Biowasserstoffproduktion umbauen. Mit der sogenannten Synthetischen Biologie schaffen sie quasi einen Baukasten mit Proteinen, deren genetischen Bauplänen und ihren Regulationsmechanismen als standardisierten Komponenten. Diese Bausteine sollen Anwender für verschiedene Zwecke beliebig kombinieren und anpassen können. Geplant ist zum Beispiel, einen Selbstzerstörungsmechanismus in die Cyanobakterien einzubauen, der anspringt, falls die genetisch veränderten Zellen ungewollt freigesetzt werden. Im Projekt evaluieren die Forscher auch biotechnologische Möglichkeiten, zum Beispiel die technische Massenanzucht der Blaualgen in optimierten Photobioreaktoren. Sowohl beim „Designen“ der Zellen als auch beim Planen der Verfahrensprozesse im Reaktor helfen Bioinformatiker mit mathematischen Simulationen bei der Optimierung. Eine enge Vernetzung der Kompetenzen aller beteiligten Arbeitsgruppen aus sieben europäischen Ländern ist dafür unabdingbar.

Maximale Energieausbeute

Normalerweise investieren Cyanobakterien und Pflanzen die bei der Photosynthese aufgenommene Lichtenergie größtenteils in Wachstum und Vermehrung, indem sie Wasser spalten und Kohlendioxid zu Kohlenhydraten umsetzen. Ziel des Projekts ist es, einen Großteil der Lichtenergie in die direkte Erzeugung von Bioenergie in Form von Wasserstoff zu investieren – und nicht in Biomasse. Damit dieses Verfahren möglichst effizient ist, müssen die Forscher die Elektronen aus der Wasserspaltung so früh wie möglich abgreifen, noch bevor der Organismus sie für die Produktion von Biomasse verwendet. Das Team um Prof. Rögner arbeitet deshalb hauptsächlich daran, die bei der Photosynthese gewonnenen Elektronen auf die Hydrogenase umzuleiten und die ganze Zelle für diesen Prozess zu optimieren. Hierzu reduzieren sie zum Beispiel drastisch die Zahl der Lichtsammelantennen, mit denen Blaualgen auch noch bei extrem wenig Licht Photosynthese betreiben können – eine Situation, die im Photobioreaktor mit kontrollierter Belichtung nicht eintritt. Diese Antennen sind das häufigste Protein in der Zelle. Verringert man ihre Anzahl, spart man nicht nur Energie, sondern ermöglicht auch eine wesentlich höhere Zelldichte im Reaktor.

Kostengünstige Versuchsreaktoren

Kostenanalysen von Prof. Dr. Hermann-Josef Wagner, Lehrstuhl für Energiesysteme und Energiewirtschaft an der RUB, im Zuge des Vorläuferprojektes zeigten, dass der zukünftig mit diesen Designzellen erzeugte Wasserstoff wirtschaftlich konkurrenzfähig sein kann, wenn alle Optimierungen planmäßig verlaufen. „Licht ist umsonst, die Zelle kann sich dadurch selbst mit Energie versorgen“, erklärt Rögner. Auch das Anzuchtmedium – mit Nährstoffen angereichertes Wasser – ist billig verfügbar und kann dem Wasserkreislauf wieder zugeführt werden. Alternativ kann Meerwasser mit marinen Cyanobakterien verwendet werden. Teuer sind bisher noch die zur Massenkultur verwendeten Photobioreaktoren. Gemeinsam mit der Firma KSD aus Hattingen entwickeln die Bochumer daher kostengünstige, spezielle Flachbett-Systeme. Ziel ist, den bereits verfügbaren 5 L-Laborreaktor in der Projektlaufzeit zu einem 100 L-Prototyp auszubauen. Dann möchte das Team in Zusammenarbeit mit zwei italienischen Kooperationspartnern mehrere Module koppeln und so Freiland-Reaktoren mit einem Fassungsvermögen von bis zu 1000 Litern konstruieren und erproben. „Das eröffnet die attraktive Möglichkeit, die Herstellungs- und zukünftige Betriebskosten zu minimieren und speziell auch auf landwirtschaftlich nicht nutzbaren Flächen mit hoher Photosynthese-Effizienz preiswert Energie zu erzeugen“, sagt Rögner.

Weitere Informationen:

Prof. Dr. Matthias Rögner, Lehrstuhl für Biochemie der Pflanzen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-23634, E-Mail:

matthias.roegner@ruhr-uni-bochum.de

Angeklickt:

Biochemie der Pflanzen an der RUB
http://www.bpf.ruhr-uni-bochum.de/index_DE.htm
EU-Projekt "CyanoFactory"
http://cyanofactory.eu
Stellungnahme der Leopoldina zu Bioenergie
http://www.leopoldina.org/de/publikationen/detailansicht/?publication[publication]=433&cHash=85b62c7ab0fc52f395b84e738e8b1f42

Redaktion: Nadja Balnis

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Krebsdiagnostik: Pinkeln statt Piksen?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Kugelmühlen statt Lösungsmittel: Nanographene mit Mechanochemie
25.05.2018 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics