Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Designzellen produzieren erneuerbare Energie: RUB-Wissenschaftler starten Arbeit an EU-Projekt

28.01.2013
„CyanoFactory“ als Wasserstoff-Lieferant der Zukunft

Wasserstoff wäre ein idealer Energieträger, gäbe es da nicht einen Haken: Momentan wird er überwiegend aus fossilen Brennstoffen gewonnen. RUB-Forscher um Prof. Dr. Matthias Rögner vom Lehrstuhl Biochemie der Pflanzen arbeiten nun an einer umweltfreundlichen Alternative: Sie nutzen Blaualgen, um Wasserstoff aus Wasser zu gewinnen. Die Energie dazu liefert die Sonne – völlig kostenlos.


Kombination verschiedener Cyanobakterien-Mutanten, die zur Wasserstoffproduktion aus Wasser beitragen sollen, zur "Designzelle": Reduktion der Lichtsammelantennen (links), Erhöhung der Elektronentransportrate durch Entkopplung vom Protonentransport (Erhöhung der Protonenleitfähigkeit, Mitte) und Abzweigung von Elektronen zur Biowasserstoffproduktion auf Kosten der CO2-Fixierung (links).
Grafik: LS Biochemie der Pflanzen, RUB

Gemeinsam mit neun internationalen Kooperationspartnern aus Industrie und Forschung entwickeln die Wissenschaftler unter Federführung der Universität Uppsala solargetriebene Energiemodule, die sowohl kostengünstig als auch umweltfreundlich sind. Das Projekt „CyanoFactory“ läuft über drei Jahre und wird von der Europäischen Union mit insgesamt 3,7 Mio. Euro gefördert; davon gehen 425.000 Euro an die RUB.

Vorläuferprojekt „Biobatterie“

Die RUB-Arbeitsgruppe hat in dem vom BMBF geförderten Vorläuferprojekt bereits erfolgreich eine Art „Biobatterie“ entwickelt: ein halbkünstliches Modellsystem mit isolierten biologischen Komponenten wie den beiden Photosystemen, die Lichtenergie in chemische Energie umwandeln. Außerdem haben die Forscher begonnen, die Photosynthese von Blaualgen (Cyanobakterien) genetisch so zu verändern, dass sie für eine zukünftige lichtgetriebene Wasserstoffproduktion geeignet ist. Die hierfür benötigten sogenannten Hydrogenasen bauen Projektteilnehmer an der Universität Uppsala aus anderen Organismen in die Zellen ein, da Cyanobakterien kein leistungsfähiges Enzym zur Wasserstoffproduktion besitzen.

„Designzellen“ nach Maß: Synthetische Biologie

Im neuen EU-Projekt wollen die Wissenschaftler Cyanobakterien langfristig zu selbstreplizierenden „zellulären Fabriken“ für die Biowasserstoffproduktion umbauen. Mit der sogenannten Synthetischen Biologie schaffen sie quasi einen Baukasten mit Proteinen, deren genetischen Bauplänen und ihren Regulationsmechanismen als standardisierten Komponenten. Diese Bausteine sollen Anwender für verschiedene Zwecke beliebig kombinieren und anpassen können. Geplant ist zum Beispiel, einen Selbstzerstörungsmechanismus in die Cyanobakterien einzubauen, der anspringt, falls die genetisch veränderten Zellen ungewollt freigesetzt werden. Im Projekt evaluieren die Forscher auch biotechnologische Möglichkeiten, zum Beispiel die technische Massenanzucht der Blaualgen in optimierten Photobioreaktoren. Sowohl beim „Designen“ der Zellen als auch beim Planen der Verfahrensprozesse im Reaktor helfen Bioinformatiker mit mathematischen Simulationen bei der Optimierung. Eine enge Vernetzung der Kompetenzen aller beteiligten Arbeitsgruppen aus sieben europäischen Ländern ist dafür unabdingbar.

Maximale Energieausbeute

Normalerweise investieren Cyanobakterien und Pflanzen die bei der Photosynthese aufgenommene Lichtenergie größtenteils in Wachstum und Vermehrung, indem sie Wasser spalten und Kohlendioxid zu Kohlenhydraten umsetzen. Ziel des Projekts ist es, einen Großteil der Lichtenergie in die direkte Erzeugung von Bioenergie in Form von Wasserstoff zu investieren – und nicht in Biomasse. Damit dieses Verfahren möglichst effizient ist, müssen die Forscher die Elektronen aus der Wasserspaltung so früh wie möglich abgreifen, noch bevor der Organismus sie für die Produktion von Biomasse verwendet. Das Team um Prof. Rögner arbeitet deshalb hauptsächlich daran, die bei der Photosynthese gewonnenen Elektronen auf die Hydrogenase umzuleiten und die ganze Zelle für diesen Prozess zu optimieren. Hierzu reduzieren sie zum Beispiel drastisch die Zahl der Lichtsammelantennen, mit denen Blaualgen auch noch bei extrem wenig Licht Photosynthese betreiben können – eine Situation, die im Photobioreaktor mit kontrollierter Belichtung nicht eintritt. Diese Antennen sind das häufigste Protein in der Zelle. Verringert man ihre Anzahl, spart man nicht nur Energie, sondern ermöglicht auch eine wesentlich höhere Zelldichte im Reaktor.

Kostengünstige Versuchsreaktoren

Kostenanalysen von Prof. Dr. Hermann-Josef Wagner, Lehrstuhl für Energiesysteme und Energiewirtschaft an der RUB, im Zuge des Vorläuferprojektes zeigten, dass der zukünftig mit diesen Designzellen erzeugte Wasserstoff wirtschaftlich konkurrenzfähig sein kann, wenn alle Optimierungen planmäßig verlaufen. „Licht ist umsonst, die Zelle kann sich dadurch selbst mit Energie versorgen“, erklärt Rögner. Auch das Anzuchtmedium – mit Nährstoffen angereichertes Wasser – ist billig verfügbar und kann dem Wasserkreislauf wieder zugeführt werden. Alternativ kann Meerwasser mit marinen Cyanobakterien verwendet werden. Teuer sind bisher noch die zur Massenkultur verwendeten Photobioreaktoren. Gemeinsam mit der Firma KSD aus Hattingen entwickeln die Bochumer daher kostengünstige, spezielle Flachbett-Systeme. Ziel ist, den bereits verfügbaren 5 L-Laborreaktor in der Projektlaufzeit zu einem 100 L-Prototyp auszubauen. Dann möchte das Team in Zusammenarbeit mit zwei italienischen Kooperationspartnern mehrere Module koppeln und so Freiland-Reaktoren mit einem Fassungsvermögen von bis zu 1000 Litern konstruieren und erproben. „Das eröffnet die attraktive Möglichkeit, die Herstellungs- und zukünftige Betriebskosten zu minimieren und speziell auch auf landwirtschaftlich nicht nutzbaren Flächen mit hoher Photosynthese-Effizienz preiswert Energie zu erzeugen“, sagt Rögner.

Weitere Informationen:

Prof. Dr. Matthias Rögner, Lehrstuhl für Biochemie der Pflanzen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-23634, E-Mail:

matthias.roegner@ruhr-uni-bochum.de

Angeklickt:

Biochemie der Pflanzen an der RUB
http://www.bpf.ruhr-uni-bochum.de/index_DE.htm
EU-Projekt "CyanoFactory"
http://cyanofactory.eu
Stellungnahme der Leopoldina zu Bioenergie
http://www.leopoldina.org/de/publikationen/detailansicht/?publication[publication]=433&cHash=85b62c7ab0fc52f395b84e738e8b1f42

Redaktion: Nadja Balnis

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher finden neue Ansätze gegen Wirkstoffresistenzen in der Tumortherapie
15.12.2017 | Universität Leipzig

nachricht Moos verdoppelte mehrmals sein Genom
15.12.2017 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik