Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Designzellen produzieren erneuerbare Energie: RUB-Wissenschaftler starten Arbeit an EU-Projekt

28.01.2013
„CyanoFactory“ als Wasserstoff-Lieferant der Zukunft

Wasserstoff wäre ein idealer Energieträger, gäbe es da nicht einen Haken: Momentan wird er überwiegend aus fossilen Brennstoffen gewonnen. RUB-Forscher um Prof. Dr. Matthias Rögner vom Lehrstuhl Biochemie der Pflanzen arbeiten nun an einer umweltfreundlichen Alternative: Sie nutzen Blaualgen, um Wasserstoff aus Wasser zu gewinnen. Die Energie dazu liefert die Sonne – völlig kostenlos.


Kombination verschiedener Cyanobakterien-Mutanten, die zur Wasserstoffproduktion aus Wasser beitragen sollen, zur "Designzelle": Reduktion der Lichtsammelantennen (links), Erhöhung der Elektronentransportrate durch Entkopplung vom Protonentransport (Erhöhung der Protonenleitfähigkeit, Mitte) und Abzweigung von Elektronen zur Biowasserstoffproduktion auf Kosten der CO2-Fixierung (links).
Grafik: LS Biochemie der Pflanzen, RUB

Gemeinsam mit neun internationalen Kooperationspartnern aus Industrie und Forschung entwickeln die Wissenschaftler unter Federführung der Universität Uppsala solargetriebene Energiemodule, die sowohl kostengünstig als auch umweltfreundlich sind. Das Projekt „CyanoFactory“ läuft über drei Jahre und wird von der Europäischen Union mit insgesamt 3,7 Mio. Euro gefördert; davon gehen 425.000 Euro an die RUB.

Vorläuferprojekt „Biobatterie“

Die RUB-Arbeitsgruppe hat in dem vom BMBF geförderten Vorläuferprojekt bereits erfolgreich eine Art „Biobatterie“ entwickelt: ein halbkünstliches Modellsystem mit isolierten biologischen Komponenten wie den beiden Photosystemen, die Lichtenergie in chemische Energie umwandeln. Außerdem haben die Forscher begonnen, die Photosynthese von Blaualgen (Cyanobakterien) genetisch so zu verändern, dass sie für eine zukünftige lichtgetriebene Wasserstoffproduktion geeignet ist. Die hierfür benötigten sogenannten Hydrogenasen bauen Projektteilnehmer an der Universität Uppsala aus anderen Organismen in die Zellen ein, da Cyanobakterien kein leistungsfähiges Enzym zur Wasserstoffproduktion besitzen.

„Designzellen“ nach Maß: Synthetische Biologie

Im neuen EU-Projekt wollen die Wissenschaftler Cyanobakterien langfristig zu selbstreplizierenden „zellulären Fabriken“ für die Biowasserstoffproduktion umbauen. Mit der sogenannten Synthetischen Biologie schaffen sie quasi einen Baukasten mit Proteinen, deren genetischen Bauplänen und ihren Regulationsmechanismen als standardisierten Komponenten. Diese Bausteine sollen Anwender für verschiedene Zwecke beliebig kombinieren und anpassen können. Geplant ist zum Beispiel, einen Selbstzerstörungsmechanismus in die Cyanobakterien einzubauen, der anspringt, falls die genetisch veränderten Zellen ungewollt freigesetzt werden. Im Projekt evaluieren die Forscher auch biotechnologische Möglichkeiten, zum Beispiel die technische Massenanzucht der Blaualgen in optimierten Photobioreaktoren. Sowohl beim „Designen“ der Zellen als auch beim Planen der Verfahrensprozesse im Reaktor helfen Bioinformatiker mit mathematischen Simulationen bei der Optimierung. Eine enge Vernetzung der Kompetenzen aller beteiligten Arbeitsgruppen aus sieben europäischen Ländern ist dafür unabdingbar.

Maximale Energieausbeute

Normalerweise investieren Cyanobakterien und Pflanzen die bei der Photosynthese aufgenommene Lichtenergie größtenteils in Wachstum und Vermehrung, indem sie Wasser spalten und Kohlendioxid zu Kohlenhydraten umsetzen. Ziel des Projekts ist es, einen Großteil der Lichtenergie in die direkte Erzeugung von Bioenergie in Form von Wasserstoff zu investieren – und nicht in Biomasse. Damit dieses Verfahren möglichst effizient ist, müssen die Forscher die Elektronen aus der Wasserspaltung so früh wie möglich abgreifen, noch bevor der Organismus sie für die Produktion von Biomasse verwendet. Das Team um Prof. Rögner arbeitet deshalb hauptsächlich daran, die bei der Photosynthese gewonnenen Elektronen auf die Hydrogenase umzuleiten und die ganze Zelle für diesen Prozess zu optimieren. Hierzu reduzieren sie zum Beispiel drastisch die Zahl der Lichtsammelantennen, mit denen Blaualgen auch noch bei extrem wenig Licht Photosynthese betreiben können – eine Situation, die im Photobioreaktor mit kontrollierter Belichtung nicht eintritt. Diese Antennen sind das häufigste Protein in der Zelle. Verringert man ihre Anzahl, spart man nicht nur Energie, sondern ermöglicht auch eine wesentlich höhere Zelldichte im Reaktor.

Kostengünstige Versuchsreaktoren

Kostenanalysen von Prof. Dr. Hermann-Josef Wagner, Lehrstuhl für Energiesysteme und Energiewirtschaft an der RUB, im Zuge des Vorläuferprojektes zeigten, dass der zukünftig mit diesen Designzellen erzeugte Wasserstoff wirtschaftlich konkurrenzfähig sein kann, wenn alle Optimierungen planmäßig verlaufen. „Licht ist umsonst, die Zelle kann sich dadurch selbst mit Energie versorgen“, erklärt Rögner. Auch das Anzuchtmedium – mit Nährstoffen angereichertes Wasser – ist billig verfügbar und kann dem Wasserkreislauf wieder zugeführt werden. Alternativ kann Meerwasser mit marinen Cyanobakterien verwendet werden. Teuer sind bisher noch die zur Massenkultur verwendeten Photobioreaktoren. Gemeinsam mit der Firma KSD aus Hattingen entwickeln die Bochumer daher kostengünstige, spezielle Flachbett-Systeme. Ziel ist, den bereits verfügbaren 5 L-Laborreaktor in der Projektlaufzeit zu einem 100 L-Prototyp auszubauen. Dann möchte das Team in Zusammenarbeit mit zwei italienischen Kooperationspartnern mehrere Module koppeln und so Freiland-Reaktoren mit einem Fassungsvermögen von bis zu 1000 Litern konstruieren und erproben. „Das eröffnet die attraktive Möglichkeit, die Herstellungs- und zukünftige Betriebskosten zu minimieren und speziell auch auf landwirtschaftlich nicht nutzbaren Flächen mit hoher Photosynthese-Effizienz preiswert Energie zu erzeugen“, sagt Rögner.

Weitere Informationen:

Prof. Dr. Matthias Rögner, Lehrstuhl für Biochemie der Pflanzen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-23634, E-Mail:

matthias.roegner@ruhr-uni-bochum.de

Angeklickt:

Biochemie der Pflanzen an der RUB
http://www.bpf.ruhr-uni-bochum.de/index_DE.htm
EU-Projekt "CyanoFactory"
http://cyanofactory.eu
Stellungnahme der Leopoldina zu Bioenergie
http://www.leopoldina.org/de/publikationen/detailansicht/?publication[publication]=433&cHash=85b62c7ab0fc52f395b84e738e8b1f42

Redaktion: Nadja Balnis

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie