Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Design von Biokatalysatoren zur nachhaltigen Synthese - Wie passen Substrate in Enzyme?

30.11.2009
In der industriellen, der so genannten "weißen", Biotechnologie werden Enzyme bei einer Vielzahl chemischer Reaktionen erfolgreich als Katalysatoren eingesetzt.

Denn sie sind in der Lage, ihre Substrate unter milden Bedingungen und mit hoher Reaktionsgeschwindigkeit umzusetzen. Andererseits sind natürliche Enzyme für Anwendungen in der Synthese oft nicht optimal, da ihr Substratspektrum zu eng ist und die gewünschten Substrate nicht ausreichend schnell umgesetzt werden.

Die Chemiker und Biologen des Instituts für Technische Biochemie der Universität Stuttgart erforschen deshalb im Rahmen eines vom Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz geförderten Projekts, wie man Enzyme so verändern kann, dass sie für die chemische Synthese von Produkten aus nachhaltigen Rohstoffen geeignet sind.

Die Wissenschaftler setzen bei der Strukturänderung der Substratbindungstasche an, dem Ort im Enzym, an dem das Substrat mit dem Enzym vorübergehend eine engverzahnte Verbindung eingeht. Um die Substratbindungstasche zu optimieren, entwickelten sie die bioinformatische Methode des "molekularen Docking" weiter. Diese Methode wurde ursprünglich für die Entwicklung von Medikamenten verwendet, bei der ein kleines Molekül, das an ein Zielprotein binden soll, wie ein Schlüssel zu einem Schloss passen muss.

Um die Methode auf die Erkennung zwischen Substrat und Enzym zu übertragen, erweiterten die Forscher die Methode zu einem mehrstufigen Verfahren, das berücksichtigt, dass die Substratbindungstaschen von Enzymen nicht starr sind. Zudem darf das Substrat nicht in seinem Ausgangszustand, sondern muss in einem dem Produkt ähnlicheren Übergangszustand in der Bindungstasche platziert werden. Dieser Übergangszustand muss in einer genau definierten Position im Enzym binden, damit das Substrat zum Produkt umgesetzt wird.

In einem ersten Schritt docken die Wissenschaftler daher das Substrat in seinem Übergangszustand an das Enzym. Im zweiten Schritt optimieren sie dann die Struktur des Enzym-Substrat-Komplexes, indem sich die Form der Substratbindungstasche der Struktur des Substrats anpasst. Im dritten Schritt wird das Substrat nochmals in die nun optimierte Substratbindungstasche gedockt. Schließlich wird die Wechselwirkungsenergie und die Position des Substrats in der Substratbindungstasche bewertet. Dieses neue, mehrstufige Verfahren zeigte für Enzyme aus der Gruppe der Lipasen und Esterasen eine Trefferquote von 80 Prozent bei der Vorhersage der Aktivität gegenüber mehreren Substraten.

Ein wesentlicher Grund für die schlechte Aktivität eines Enzyms gegenüber einem gewünschten Substrat besteht darin, dass die Form der Bindungstasche nicht zum Substrat passt. Das neue Verfahren identifiziert die störenden Bereiche, die dann durch Enzym-Design verändert werden können. Die Stuttgarter Forscher nutzen dieses Verfahren bereits in Zusammenarbeit mit dem Industriepartner Evonik Industries AG für die Entwicklung von Biokatalysatoren zur Synthese von kosmetischen Inhaltstoffen aus nachwachsenden Rohstoffen. Zudem wird das Verfahren auch im Rahmen des europäischen Verbundprojekts "Nachhaltige mikrobielle und biokatalytische Produktion von neuen funktionellen Materialien" eingesetzt.

Ansprechpartner: Prof. Jürgen Pleiss, Institut für Technische Biochemie, Tel. 0711/685-63191, e-mail: Juergen.Pleiss@itb.uni-stuttgart.de

Ursula Zitzler | idw
Weitere Informationen:
http://www.uni-stuttgart.de/presse/mediendienst/8/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften