Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Zauber der Wundheilung

02.03.2015

Das Protein Merlin steuert die kollektive Zellbewegung und bewirkt so, dass Wunden gut und schnell verheilen

Auch Zellen folgen einem Herdentrieb, und sie kommunizieren dabei auf zauberhafte Weise. Denn bei der kollektiven Bewegung von Zellen unseres Körpers spielt ein Protein namens Merlin, benannt nach dem mythischen Zauberer des mittelalterlichen Britanniens, eine wichtige Rolle. Das hat ein Team um Wissenschaftler des Max-Planck-Instituts für Intelligente Systeme in Stuttgart in einer Zusammenarbeit mit der Universitätsklinik Heidelberg herausgefunden.


Leuchtende Spur der Zellbewegung: Mit fluoreszierenden Proteinen markieren Forscher des Max-Planck-Instituts für Intelligente Systeme die Kerne von Zellen (rot) und das Protein Merlin (grün). Anschließend beobachten sie, wie sich Merlin in den Zellen verteilt, wenn diese aus einem anfangs quadratisch umrissenen Bereich herauswandern. So haben sie die Rolle von Merlin bei der Zellbewegung aufgeklärt, die auch für die Wundheilung wichtig ist.

© MPI für Intelligente Systeme

Demnach registriert Merlin in einer Zelle, ob und in welche Richtung sich eine Nachbarzelle bewegt, und bringt die Zelle dazu, in dieselbe Richtung zu kriechen. Dass sich Zellen als geschlossene Gruppe bewegen, ist wichtig, damit etwa Wunden gut und schnell verheilen. Ist die Gruppendynamik gestört, werden aber nicht nur Wunden schlechter verschlossen, auch Krebszellen können sich dann leichter im Körper ausbreiten oder Embryos entwickeln sich gestört.

Dem Körper sagt nicht immer der Kopf, wo es lang geht. Die Zellen der Haut etwa finden auch von alleine den richtigen Weg. Wenn in der Haut ein Riss klafft, bewegen sich die Zellen, die am nächsten an der Wunde sitzen, in die Lücke, und ihre Nachbarn ziehen einfach mit. So läuft es zumindest, wenn Merlin seine Aufgabe ordentlich erfüllt. Tun sie das nicht, vagabundieren die einzelnen Zellen orientierungslos durch das Gewebe. Das könnte möglicherweise sogar dazu führen, dass eine Wunde eine besonders auffällige Narbe hinterlässt oder gar nicht verheilt. Und handelt es sich bei den einzelgängerischen Zellen sogar um Tumorzellen, können sich diese im Körper leichter ausbreiten, sodass sich Metastasen bilden.

„Einzelne Zellen, die sich ungeordnet bewegen – in denen also das tumorhemmende Protein Merlin zumindest teilweise ausgeschaltet oder nicht vorhanden ist – können leichter in Gewebe eintreten, als geordnet als Gruppe von mehreren Zellen“, sagt Joachim Spatz, Direktor am Max-Planck-Institut für Intelligente Systeme und Leiter der aktuellen Studie.

Eine Zelle kann zehn hinter ihr aufgereihte Zellen mitziehen

Molekularmediziner wussten bereits, dass Merlin die Ausbreitung von Tumorzellen hemmt. Joachim Spatz und sein Team haben nun aufgeklärt, woran das liegt. Das Protein wirkt nämlich als Zellbremse. Denn in ruhenden Zellen sitzt Merlin im Zellkortex, einer proteinreichen Schicht an der Innenseite der Zellmembran, und zwar an einem Proteinkomplex, über den sich benachbarte Zellen berühren. Solange Merlin dort andockt, hemmt es auch das Protein Rac1, das eine Zelle in Bewegung setzt. Bewegt sich eine Zelle, zieht sie über den Kontakt auch an der Nachbarzelle, genauer gesagt an dem Proteinkomplex, an dem Merlin gebunden ist.

So entsteht eine mechanische Spannung, die Merlin aus der Parkposition im Kortex löst. Das Eiweiß wandert dann ins Zellplasma und blockiert nun auch Rac1 nicht mehr. Damit wird die Zellbremse gelöst: Das Rac1-Protein bildet nun in Richtung der Vorreiter-Zelle Zellfortsätze, sogenannte Lamellipodien. Diese Fortsätze ziehen den Zellkörper hinter sich her. Auf diese Weise kann eine Zelle zehn andere Zellen, die hinter ihr aufgereiht sind, anführen und mitziehen.

Dass dieser sowohl biochemische als auch mechanische Mechanismus den Herdentrieb der Zellen steuert, haben die Forscher um Joachim Spatz herausgefunden, indem sie die Bewegung von Hautzellen untersuchten. Zu diesem Zweck markierten sie Merlin in den Testläufern mit fluoreszierenden Proteinen, sodass sie dessen Wege durch die jeweilige Zelle verfolgen konnten.

Da die Forscher nun besser verstehen, wie sich Zellen als Gruppe bewegen und wann sie ihre eigenen Wege gehen, könnten sich auch neue Ansätze in der Medizin ergeben. So liefern die Erkenntnisse der Stuttgarter Forscher Hinweise, wie sich Störungen bei der Wundheilung beheben lassen oder wie die Metastasierung von Tumoren reduziert werden könnte. Sie helfen aber auch Entwicklungsbiologen beim Verständnis, wie Zellen den ihnen zugedachten Ort in einem Embryo finden. Denn solche Vorgänge steuern nicht Zauberkräfte, sondern das Zusammenspiel von Biochemie und mechanische Kräfte.


Ansprechpartner

Prof. Dr. Joachim P. Spatz
Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart
Telefon: +49 711 689-3610
Fax: +49 711 689-3612
E-Mail: spatz@mf.mpg.de
 
Annette Stumpf
Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart
Telefon: +49 711 689-3089
Fax: +49 711 689-1932
E-Mail: stumpf@is.mpg.de


Originalpublikation
Tamal Das, Kai Safferling, Sebastian Rausch, Niels Grabe, Heike Boehm und Joachim P. Spatz

A molecular mechanotransduction pathway regulates collective migration of epithelial cells

Nature Cell Biology, online veröffentlicht 23. Februar 2015; doi:10.1038/ncb3115

Prof. Dr. Joachim P. Spatz | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Spot auf die Maschinerie des Lebens
23.08.2017 | Max-Planck-Institut für die Physik des Lichts, Erlangen

nachricht Immunsystem kann durch gezielte Manipulation des Zellstoffwechsels reguliert werden
23.08.2017 | Medical University of Vienna

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie