Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Zauber der Wundheilung

02.03.2015

Das Protein Merlin steuert die kollektive Zellbewegung und bewirkt so, dass Wunden gut und schnell verheilen

Auch Zellen folgen einem Herdentrieb, und sie kommunizieren dabei auf zauberhafte Weise. Denn bei der kollektiven Bewegung von Zellen unseres Körpers spielt ein Protein namens Merlin, benannt nach dem mythischen Zauberer des mittelalterlichen Britanniens, eine wichtige Rolle. Das hat ein Team um Wissenschaftler des Max-Planck-Instituts für Intelligente Systeme in Stuttgart in einer Zusammenarbeit mit der Universitätsklinik Heidelberg herausgefunden.


Leuchtende Spur der Zellbewegung: Mit fluoreszierenden Proteinen markieren Forscher des Max-Planck-Instituts für Intelligente Systeme die Kerne von Zellen (rot) und das Protein Merlin (grün). Anschließend beobachten sie, wie sich Merlin in den Zellen verteilt, wenn diese aus einem anfangs quadratisch umrissenen Bereich herauswandern. So haben sie die Rolle von Merlin bei der Zellbewegung aufgeklärt, die auch für die Wundheilung wichtig ist.

© MPI für Intelligente Systeme

Demnach registriert Merlin in einer Zelle, ob und in welche Richtung sich eine Nachbarzelle bewegt, und bringt die Zelle dazu, in dieselbe Richtung zu kriechen. Dass sich Zellen als geschlossene Gruppe bewegen, ist wichtig, damit etwa Wunden gut und schnell verheilen. Ist die Gruppendynamik gestört, werden aber nicht nur Wunden schlechter verschlossen, auch Krebszellen können sich dann leichter im Körper ausbreiten oder Embryos entwickeln sich gestört.

Dem Körper sagt nicht immer der Kopf, wo es lang geht. Die Zellen der Haut etwa finden auch von alleine den richtigen Weg. Wenn in der Haut ein Riss klafft, bewegen sich die Zellen, die am nächsten an der Wunde sitzen, in die Lücke, und ihre Nachbarn ziehen einfach mit. So läuft es zumindest, wenn Merlin seine Aufgabe ordentlich erfüllt. Tun sie das nicht, vagabundieren die einzelnen Zellen orientierungslos durch das Gewebe. Das könnte möglicherweise sogar dazu führen, dass eine Wunde eine besonders auffällige Narbe hinterlässt oder gar nicht verheilt. Und handelt es sich bei den einzelgängerischen Zellen sogar um Tumorzellen, können sich diese im Körper leichter ausbreiten, sodass sich Metastasen bilden.

„Einzelne Zellen, die sich ungeordnet bewegen – in denen also das tumorhemmende Protein Merlin zumindest teilweise ausgeschaltet oder nicht vorhanden ist – können leichter in Gewebe eintreten, als geordnet als Gruppe von mehreren Zellen“, sagt Joachim Spatz, Direktor am Max-Planck-Institut für Intelligente Systeme und Leiter der aktuellen Studie.

Eine Zelle kann zehn hinter ihr aufgereihte Zellen mitziehen

Molekularmediziner wussten bereits, dass Merlin die Ausbreitung von Tumorzellen hemmt. Joachim Spatz und sein Team haben nun aufgeklärt, woran das liegt. Das Protein wirkt nämlich als Zellbremse. Denn in ruhenden Zellen sitzt Merlin im Zellkortex, einer proteinreichen Schicht an der Innenseite der Zellmembran, und zwar an einem Proteinkomplex, über den sich benachbarte Zellen berühren. Solange Merlin dort andockt, hemmt es auch das Protein Rac1, das eine Zelle in Bewegung setzt. Bewegt sich eine Zelle, zieht sie über den Kontakt auch an der Nachbarzelle, genauer gesagt an dem Proteinkomplex, an dem Merlin gebunden ist.

So entsteht eine mechanische Spannung, die Merlin aus der Parkposition im Kortex löst. Das Eiweiß wandert dann ins Zellplasma und blockiert nun auch Rac1 nicht mehr. Damit wird die Zellbremse gelöst: Das Rac1-Protein bildet nun in Richtung der Vorreiter-Zelle Zellfortsätze, sogenannte Lamellipodien. Diese Fortsätze ziehen den Zellkörper hinter sich her. Auf diese Weise kann eine Zelle zehn andere Zellen, die hinter ihr aufgereiht sind, anführen und mitziehen.

Dass dieser sowohl biochemische als auch mechanische Mechanismus den Herdentrieb der Zellen steuert, haben die Forscher um Joachim Spatz herausgefunden, indem sie die Bewegung von Hautzellen untersuchten. Zu diesem Zweck markierten sie Merlin in den Testläufern mit fluoreszierenden Proteinen, sodass sie dessen Wege durch die jeweilige Zelle verfolgen konnten.

Da die Forscher nun besser verstehen, wie sich Zellen als Gruppe bewegen und wann sie ihre eigenen Wege gehen, könnten sich auch neue Ansätze in der Medizin ergeben. So liefern die Erkenntnisse der Stuttgarter Forscher Hinweise, wie sich Störungen bei der Wundheilung beheben lassen oder wie die Metastasierung von Tumoren reduziert werden könnte. Sie helfen aber auch Entwicklungsbiologen beim Verständnis, wie Zellen den ihnen zugedachten Ort in einem Embryo finden. Denn solche Vorgänge steuern nicht Zauberkräfte, sondern das Zusammenspiel von Biochemie und mechanische Kräfte.


Ansprechpartner

Prof. Dr. Joachim P. Spatz
Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart
Telefon: +49 711 689-3610
Fax: +49 711 689-3612
E-Mail: spatz@mf.mpg.de
 
Annette Stumpf
Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart
Telefon: +49 711 689-3089
Fax: +49 711 689-1932
E-Mail: stumpf@is.mpg.de


Originalpublikation
Tamal Das, Kai Safferling, Sebastian Rausch, Niels Grabe, Heike Boehm und Joachim P. Spatz

A molecular mechanotransduction pathway regulates collective migration of epithelial cells

Nature Cell Biology, online veröffentlicht 23. Februar 2015; doi:10.1038/ncb3115

Prof. Dr. Joachim P. Spatz | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie