Der Ursprung der Photosynthese

Atomare Details der zwei Enzyme FBPase and SBPase. Quelle: Oliver Einsle/Universität Freiburg

Die Umwandlung von Licht in chemische Energie, die Photosynthese, ist einer der wichtigsten biologischen Prozesse auf Erden. Photosynthese findet in den grünen Teilen von Pflanzen und Algen statt und bildet die Grundlage für die Ernährung von Pilzen, Tieren und Menschen.

Als weiteren positiven Effekt verringert sie die Konzentration des Treibhausgases Kohlenstoffdioxid (CO2) in der Luft. Ein internationales Team mit den Freiburger Wissenschaftlern Prof. Dr. Oliver Einsle und Prof. Dr. Ralf Reski hat in einer Studie am Moos Physcomitrella patens die Struktur, Wirkweise und Abstammung von zwei Enzymen aufgeklärt, die von zentraler Bedeutung für die CO2-Fixierung sind.

Das Team hat gezeigt: Im Laufe der Evolution haben Gene aus allen drei Domänen des Lebens zur CO2-Fixierung in Pflanzen beigetragen. Die Ergebnisse wurden in der Fachzeitschrift „Proceedings of the National Academy of Sciences of the United States of America“ (PNAS) veröffentlicht.

Durch Photosynthese wandeln Pflanzen und Algen Solarenergie, also Sonnenlicht, in chemische Energie in Form von Stärke um. Bestimmte Enzyme, zu denen FBPase und SBPase gehören, sind von zentraler Bedeutung für diese Umwandlung, bei der das Treibhausgas CO2 zu immer komplexeren Zuckermolekülen bis hin zur Stärke aufgebaut wird.

Ist dieser Prozess der CO2-Fixierung effizient, wachsen Pflanzen schneller und liefern mehr Ertrag und somit auch mehr Nahrung für die Menschheit. Das internationale Forschungsteam mit den Freiburger Wissenschaftlerinnen und Wissenschaftlern hat die molekulare Struktur der Enzyme FBPase und SBPase entschlüsselt und anhand von genetischen sowie biochemischen Daten aufgedeckt, wie sie wirken und welchen Ursprung ihre Gene haben.

Obwohl beide aus Moospflanzen isolierte Enzyme sich in ihrer Wirkungsweise ähneln, stammen sie von Vorläufern anderer Lebewesen ab, die sogar zu anderen Domänen des Lebens gehören. Eines der beiden Gene, die die Bauweise für die Enzyme speichern, stammt aus Alpha-Proteobakterien, das andere aus Archaeen – einzellige Organismen, die selbst keine Photosynthese oder CO2-Fixierung betreiben.

Beide Gene wurden im Laufe der Evolution in Pflanzen, die zu den Eukaryonten –Lebewesen mit Zellkern – zählen, zweckentfremdet und optimiert. Damit sind Photosynthese und CO2-Fixierung genetische Mosaike aus den drei bekannten Domänen des Lebens: Bakterien, Archaeen und Eukaryonten.

Die Erstautorin der Studie ist die Doktorandin Desirée Gütle, die im Rahmen einer co-tutelle, einem Promotionsverfahren in zwei Ländern, in Nancy/Frankreich und in Freiburg forscht und durch die Freiburger Spemann Graduate School of Biology and Medicine (SGBM) unterstützt wird. Initiatoren der Studie sind Prof. Jean-Pierre Jacquot aus Nancy und Prof. Bob Buchanan, die vor vierzig Jahren an der University of California in Berkeley/USA begannen, die Enzyme FBPase und SBPase zu erforschen.

Im Freiburg Institute for Advanced Studies (FRIAS) kam die Zusammenarbeit mit den Freiburger Forscherinnen und Forschern zustande. „Manchmal dauert es eben vierzig Jahre, bis man ein biologisches Rätsel gelöst hat“, sagt Jacquot, der wiederholt als Gastwissenschaftler am FRIAS und in der Arbeitsgruppe von Ralf Reski forscht. „Das Moss Physcomitrella patens hat sich erneut als perfekter Modellorganismus erwiesen, um eine grundlegende Frage der Biologie zu beantworten“, erklärt Reski. „Da die beiden untersuchten Enzyme wichtig für den Pflanzenertrag sind, können unsere Ergebnisse Bedeutung für die Pflanzenzüchtung haben.“

Oliver Einsle leitet die Arbeitsgruppe Membran- und Metalloproteine am Institut für Biochemie der Fakultät für Chemie und Pharmazie. Ralf Reski ist Professor für Pflanzenbiotechnologie an der Fakultät für Biologie. Einsle und Reski sind Mitglieder des Freiburger Exzellenzclusters BIOSS Centre for Biological Signalling Studies.

Originalpublikation:
Desirée D. Gütle, Thomas Roret, Stefanie J. Mueller, Jérémy Couturier, Stéphane D. Lemaire, Arnaud Hecker, Tiphaine Dhalleine, Bob B. Buchanan, Ralf Reski, Oliver Einsle, Jean-Pierre Jacquot (2016): Chloroplast FBPase and SPBase are thioredoxin-linked enzymes with similar architecture but different evolutionary histories. Proceedings of the National Academy of Sciences (USA), DOI: 10.1073/pnas.1606241113.

Kontakt:
Prof. Dr. Ralf Reski
Fakultät für Biologie
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-6968
E-Mail: pbt@biologie.uni-freiburg.de
Homepage: www.plant-biotech.net

https://www.pr.uni-freiburg.de/pm/2016/pm.2016-06-14.92

Media Contact

Rudolf-Werner Dreier Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer