Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Ryanodin-Rezeptor: Schleuse für Kalzium in Muskelzellen

02.12.2014

Max-Planck-Wissenschaftler entschlüsseln den dreidimensionalen Aufbaus des Kalziumkanals mit bislang unerreichter Genauigkeit

Wenn Muskeln sich zusammen ziehen, sind die sogenannten Ryanodin-Rezeptoren gefordert. Durch diese Ionenkanäle werden die Kalzium-Ionen aus Speicherorganen freigesetzt, die letztlich die Kontraktion der Muskelzellen auslösen.

Defekte Ryanodin-Rezeptoren können beispielsweise zu Herzrhythmusstörungen oder plötzlichem Herzstillstand führen. Forscher vom Max-Planck-Institut für molekulare Physiologie in Dortmund haben nun den dreidimensionalen Aufbau des Rezeptors analysiert.

Die Forscher haben die Rezeptoren in winzige Nano-Membranen eingefügt, damit sie die Proteine in einem Milieu untersuchen können, die ihrer natürlichen Umgebung in der Zelle ähnelt.

Mithilfe der Kryo-Elektronenmikroskopie und einer neuen Detektionstechnik für Elektronen haben die Forscher den Aufbau des Rezeptors mit einer bisher unerreichten Genauigkeit sichtbar gemacht. Mit diesem Wissen könnten Wissenschaftler in Zukunft neue Wirkstoffe entwickeln, mit denen sich Schädigungen des Ryanodin-Rezeptors behandeln lassen.

Der Ryanodin-Rezeptor bildet einen Kanal, durch den Kalzium-Ionen in die Zelle fließen können. Die Animation zeigt, wie das Protein seine Struktur verändert, wenn Kalzium-Ionen an ihn binden: Durch eine komplexe Bewegung öffnet sich der Kanal.

Vier im Zentrum liegende Proteinabschnitte bilden eine Art Türsteher-Region („ion gate“), die nur Kalzium-Ionen passieren lässt und andere zurückhält.

Die sogenannte „EF-Hand“ ist der Sensor, mit dem das Protein Kalzium-Ionen erkennt. Dieser in verschiedenen Proteinen vorkommende Abschnitt aus elektrisch geladenen Aminosäuren ändert seine räumliche Struktur, wenn Kalzium an ihn bindet, und öffnet dadurch die Türsteher-Region.

Originalpublikation:
Julian von der Ecken, Mirco Müller, William Lehman, Dietmar J. Manstein, Pawel A. Penczek & Stefan Raunser
Structure of the F-actin-tropomyosin complex
Nature, 1. December 2014, published online

Ansprechpartner:
Dr. Stefan Raunser
Max-Planck-Institut für molekulare Physiologie, Dortmund
Telefon:+49 231 133-2356Fax:+49 231 133-2399
E-Mail:stefan.raunser@mpi-dortmund.mpg.de

Dr. Peter Herter
Max-Planck-Institut für molekulare Physiologie, Dortmund
Telefon:+49 231 133-2500Fax:+49 231 133-2599
E-Mail:peter.herter@mpi-dortmund.mpg


Weitere Informationen:

http://www.mpg.de/8784106/ryanodin_rezeptor_struktur  Der Ryanodin-Rezeptor in Bewegung

Dr Harald Rösch | Max-Planck-Gesellschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik