Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Mensch auf dem Chip

20.02.2015

TU-Wissenschaftler entwickelten einen Mini-Organismus, der Millionen Tierversuche überflüssig machen soll

11,4 Millionen Tiere wurden laut EU-Statistik im Jahre 2011 in Forschung und Entwicklung eingesetzt, die meisten davon für Testungen. Doch nach wie vor bleibt die Aussagekraft von Tests am Tier für die Wirkung auf den Menschen begrenzt. Viele teure Experimente werden daher wieder abgebrochen.


TU-Wissenschaftler Dr. Uwe Marx mit Multi-Organ-Chip

© TU Berlin/PR/Phillipp Arnoldt

Prof. Dr. Roland Lauster und sein Team vom TU-Fachgebiet Medizinische Biotechnologie entwickeln derzeit „Mensch auf dem Chip“-Plattformen, Organstrukturen im Mikromaßstab, die auf einem Chip Platz haben und auf Wirkstoffe wie echte Organe reagieren.

Bereits fertig und funktionsfähig ist der „Zwei-Organe-Chip“. Dafür erhielt Dr. Uwe Marx, ein Wissenschaftler aus dem Team und Geschäftsführer der TissUse GmbH den Tierschutzforschungspreis des Bundesministeriums für Ernährung und Landwirtschaft (BMEL).

„Wir hoffen, dass wir Versuche an mehreren Millionen Tieren jährlich allein in Deutschland überflüssig machen – und gleichzeitig die Entwicklungskosten von neuen Medikamenten, Kosmetika und Chemikalien erheblich senken können.“

Der TU-Wissenschaftler Dr. Uwe Marx hat mit seinem Team und Kooperationspartnern den Multi-Organ-Chip (MOC) entwickelt, eine zukunftsweisende Alternative zu Tierversuchen und nachfolgenden Tests an menschlichen Probanden. Die Forscher am Fachgebiet Medizinische Biotechnologie haben sich darauf spezialisiert, menschliche Organe und Organsysteme über lange Zeiten im Mikromaßstab zu züchten.

Dafür nutzen sie nur wenige lebende Zellen, zum Beispiel aus Leber, Gehirn, Haut, Niere oder Darm, die in organtypischer dreidimensionaler Anordnung jeweils die komplette Funktion des Organs in kleinerem Maßstab abbilden und simulieren. Dr. Uwe Marx ist bislang der Einsatz eines Zwei-Organe-Chips für mehrere unterschiedliche Langzeittestverfahren für Substanzen gelungen, die zur Anwendung am Menschen vorgesehen sind. Die organähnlichen Gewebestrukturen auf dem Chip sind miteinander durch blutgefäßähnliche Mikrokanäle verbunden.

Zukunftsziel: der vollständige Mini-Organismus

„Das Ziel ist es, einen Mini-Organismus mit allen lebenswichtigen Organen abzubilden. Doch das ist noch Zukunftsmusik“, erklärt Uwe Marx. Aber auch mit dem Entwicklungsstand von heute können die Forscher bereits Tierversuche in großem Umfang ersetzen. „Die Mikroorgane im Chip liefern uns Ergebnisse, die die natürliche Reaktion menschlicher Organe zum Beispiel auf Nebenwirkungen von Medikamenten, Kosmetika, Chemikalien oder anderen Produkten in einzigartiger Weise, verlässlich vorhersagbar machen, sodass derartige Produkte gar nicht erst vorklinisch am Tier getestet werden müssen. Auch die nachfolgenden klinischen Tests an menschlichen Probanden könnten vielfach entfallen.

Medikamententests: Tiere reagieren anders

Animalische Organismen reagierten durchaus anders als menschliche. Durchschnittlich fielen immer noch neun von zehn Kandidaten für Medikamente, die die Sicherheits- und Wirksamkeitstestungen im Tier bestanden haben, dann in der klinischen Testung am Menschen durch. Es seien diese vielen Ausfälle, die zu hohen Entwicklungskosten führten. „Wir können mit unserem Chip also zwei Fliegen mit einer Klappe schlagen“, sagt Uwe Marx.

„Wir reduzieren das Leid von Abermillionen Tieren sowie die Anzahl der Versuchspersonen in klinischen Studien bei gleichzeitig sinkenden Entwicklungskosten.“ Um das Produkt erfolgreich zu vermarkten, haben die Wissenschaftler bereits im Jahr 2010 die „TissUse GmbH“ als Spin-off der TU Berlin gegründet, deren Geschäftsführer Uwe Marx ist.

„Die Entwicklung wurde durch eine Förderung aus dem ‚GO-Bio-Wettbewerb‘ des Bundesministeriums für Bildung und Forschung möglich, mit dem gründungsbereite Forscherteams in den Lebenswissenschaften unterstützt werden. Mit den ersten Produkten gehen wir nun aktiv in die Kommerzialisierungsphase“, erklärt Uwe Marx. Und diese Innovation bietet weiteres vielversprechendes Potenzial für die Berliner Gründerszene.

www.medbt.tu-berlin.de
www.tissuse.com 

Weitere Informationen erteilen Ihnen gern:
Prof. Dr. Roland Lauster, TU Berlin, Fachgebiet Medizinische Biotechnologie
Tel.: 030 / 314-72090
E-Mail: roland.lauster@tu-berlin.de

Dr. Uwe Marx
TU Berlin, Fachgebiet Medizinische Biotechnologie / TissUse GmbH, Markgrafenstraße 18/4, 15528 Spreenhagen
Tel.: 030 / 314-27911
E-Mail: uwe.marx@tu-berlin.de

Stefanie Terp | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Basis für neue medikamentöse Therapie bei Demenz
27.07.2017 | Medizinische Hochschule Hannover

nachricht Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse
27.07.2017 | Westfälische Wilhelms-Universität Münster

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Basis für neue medikamentöse Therapie bei Demenz

27.07.2017 | Biowissenschaften Chemie

Aus Potenzial Erfolge machen: 30 Rittaler schließen Nachqualifizierung erfolgreich ab

27.07.2017 | Unternehmensmeldung

Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse

27.07.2017 | Biowissenschaften Chemie