Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der leise Kampf der Pilze: Jenaer Wissenschaftler identifizieren einzigartigen Abwehrmechanismus

09.06.2017

Um sich zu verteidigen, produziert der Pilz mit dem nüchternen Namen BY1 Abwehrstoffe, die die Entwicklung seiner Fressfeinde wie beispielsweise Insektenlarven hemmt. Dem Team um Prof. Dr. Dirk Hoffmeister von der Friedrich-Schiller-Universität Jena ist es nun gelungen, den Abwehrmechanismus nachzuvollziehen. Die Ergebnisse sind in der renommierten Fachzeitschrift „Angewandte Chemie International Edition“ veröffentlicht worden.

Die Natur ist ein Wechselspiel: Tiere, Pflanzen und auch Pilze sind in einem ständigen Austausch – von der symbiotischen Vernetzung bis hin zum Kampf ums Überleben. Zur Verteidigung vor beispielsweise Fressfeinden haben sich daher eine Vielzahl von Abwehrmechanismen etabliert: Doch wo Tiere flüchten, kämpfen oder Laute von sich geben können, bleibt gerade Pilzen oder Pflanzen nur der Kampf im Stillen.


Der extrem seltene Pilz BY1 bildet zu seiner Verteidigung vor Fressfeinden gelbe Abwehrstoffe, wie das Team um Dirk Hoffmeister von der Friedrich-Schiller-Universität Jena jetzt herausfand.

(Foto: Philip Brandt)

Zwar unterstützen Pilze durch Symbiosen das Pflanzenwachstum oder spielen eine wichtige Rolle im Kohlenstoff-Kreislauf. Gleichzeitig sind sie jedoch zahlreichen Organismen ausgesetzt, die sich von ihnen ernähren oder auf ihnen parasitieren. Die Pilze ergeben sich aber nicht kampflos, wie die kürzlich erschienene Studie von Dirk Hoffmeister und seinen Kollegen vom Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie – Hans-Knöll-Institut – und der Technischen Universität Dortmund einmal mehr beweist.

Gelbe Farbstoffe wehren die angreifenden Larven ab

Sobald beispielsweise Insektenlarven beginnen, den Pilz BY1 – ein Verwandter der heimischen Schichtpilze – zu fressen, produziert er an den verletzten Stellen zwei sogenannte Polyen-Carbonsäuren. Das sind gelbe Farbstoffe, die die angreifenden Larven abwehren. Dies ist insofern ungewöhnlich, da die Struktur der Substanzen auf einem eher untypischen Molekülgerüst aufbaut.

Für die Synthese der Polyene ist außerdem nur ein einziges, neu entdecktes Enzym verantwortlich, das zur Gruppe der Polyketidsynthasen gehört. Das Forscherteam fand heraus, dass diese Polyketidsynthase die Abwehrstoffe auch über einen sehr ungewöhnlichen und bisher unbekannten Mechanismus verändert: Sie verschiebt zahlreiche Kohlenstoff-Doppelbindungen innerhalb des Moleküls. Die Erkenntnis der Wissenschaftler erklärt die Auseinandersetzung von BY1 mit seiner Umwelt und zeigt, wie sich der Pilz zwar leise, aber trotzdem nachdrücklich verteidigt.

Zur Überprüfung der Ergebnisse rekonstruierten die Jenaer Forscher die Biosynthese erfolgreich im Schimmelpilz „Aspergillus niger“. Auch er produzierte daraufhin die ungewöhnlichen gelben Abwehrstoffe. „Die Gene für diese Art Farbstoffe sind weit verbreitet bei den Pilzen. Wir nehmen daher an, dass es sich bei dieser Verteidigungsstrategie um ein viel allgemeineres und weit verbreitetes Abwehrprinzip handelt“, ordnet Hoffmeister die Forschungsergebnisse ein. „Unsere Studien tragen entsprechend dazu bei, Pilze in ihrer Umwelt und im Austausch mit anderen Organismen besser zu verstehen.“

Weltweit bisher nur ein einziges Mal gefunden

BY1 wurde in der Natur weltweit bisher nur ein einziges Mal gefunden. Bei seiner ungewöhnlichen Bezeichnung handelt es sich um ein reines Laborkürzel und keinen regulären Artennamen. Da BY1 an seinem natürlichen Standort das Wachstum anderer Pilze hemmt, forschten die Wissenschaftler zunächst nach sogenannten antifungalen Verbindungen. Solche Substanzen kämen auch als Wirkstoffe gegen Pilzinfektionen infrage. Erst durch genaue Beobachtungen und die richtigen Schlussfolgerungen ergründeten die Forscher das zweite Geheimnis von BY1 und entdeckten die larvenabwehrenden Stoffe.

Das Forschungsergebnis unterstreicht einen wichtigen wissenschaftlichen Schwerpunkt der Universitätsstadt Jena, denn die Studie entstand im Rahmen des Sonderforschungsbereichs „ChemBioSys“. Hier beschäftigen sich Forschungsgruppen der Universität und mehrerer außeruniversitärer Institute mit der Kommunikation von Organismen, die ausschließlich durch chemische Signalstoffe gesteuert wird. Der Abwehrmechanismus vom Pilz BY1 ist ein Paradebeispiel für solch eine Interaktion mit der Umwelt auf Basis von chemischen Verbindungen.

Originalpublikation:
Brandt P, García-Altares M, Nett M, Hertweck C, Hoffmeister D (2017) Induced chemical defense of a mushroom by a double bond-shifting polyene synthase. Angew Chem Intl Ed, 56, 5937-5941.

Kontakt:
Prof. Dr. Dirk Hoffmeister
Institut für Pharmazie der Friedrich-Schiller-Universität Jena
Winzerlaer Straße 2
07745 Jena
Tel.: 03641 / 949851
E-Mail: dirk.hoffmeister[at]leibniz-hki.de

Monika Weiß | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-jena.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie