Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Kampf ums Eisen

09.02.2015

Wie der Körper Krankheitserreger aushungert: Heidelberger Wissenschaftler des Universitätsklinikums Heidelberg und des Europäischen Laboratoriums für Molekularbiologie (EMBL) haben einen bisher unbekannten Mechanismus der Infektionsabwehr entdeckt / Neues Wissen könnte die Behandlung der Blutarmut bei chronischen Infektionen verbessern / Ergebnisse im Fachjournal „Blood“ veröffentlicht

Chronische Infektionen, wie sie häufig bei Menschen mit geschwächtem Immunsystem auftreten, führen indirekt auch zu einem Mangel an rotem Blutfarbstoff. Die Betroffenen leiden unter Anämie.


A new way mice keep iron (purple) out of reach of pathogens. IMAGE FROM GUIDA et al. BLOOD 2015

Nun haben Wissenschaftler des Universitätsklinikums Heidelberg und des Europäischen Laboratoriums für Molekularbiologie (EMBL) an Mäusen einen Signalweg entdeckt, der bei der Entstehung der Blutarmut eine wichtige Rolle spielt. Wird dieser Mechanismus in bestimmten Zellen des Immunsystems aktiviert, bunkern sie ab sofort alles Eisen, das sie aufnehmen. Was zunächst dazu dient, die Krankheitserreger auszuhungern, schadet schließlich auch dem eigenen Körper.

Das Eisen steht nämlich auch nicht mehr für die Bildung des roten Blutfarbstoffes zur Verfügung. Das Wissen um diesen bisher unbekannten Signalweg soll nun dazu beitragen, die Behandlung der Blutarmut bei chronischen Erkrankungen zu verbessern. Die Arbeit ist in der aktuellen Ausgabe des renommierten Fachjournals „Blood“ erschienen.

Bei der Bekämpfung von Bakterien setzt der Körper nicht nur auf den direkten Angriff durch Abwehrzellen. Gleichzeitig entzieht er den Eindringlingen einen lebenswichtigen Stoff: Eisen. Bei Säugetieren übernehmen diesen Job z.B. Makrophagen, die Fresszellen des Immunsystems. Sie verleiben sich beschädigte rote Blutkörperchen ein und verdauen sie.

Unter normalen Umständen geben sie das im Blutfarbstoff enthaltene Eisen zum Recycling wieder ins Blut ab. Bei einer Infektion halten sie das Eisen – sicher vor den Krankheitserregern – in ihrem Inneren zurück. Dazu reduzieren sie die Menge des Proteins Ferroportin, das Eisen aus dem Zellinnern nach außen transportiert.

Neuer Signalweg funktioniert unabhängig von bekanntem Eisen-Regulator

Bei der Frage nach dem Regulator für diesen Schutzmechanismus tippten Wissenschaftler bisher allein auf das Hormon Hepcidin. Es bindet an Ferroportin, sorgt für seinen Abbau und senkt so die Menge des verfügbaren Eisens im Körper. Der Signalweg, den Claudia Guida, Doktorandin in der Arbeitsgruppe um Professor Dr. Martina Muckenthaler, Universitätsklinikum Heidelberg, und Professor Dr. Matthias Henze, EMBL, nun entdeckte, funktioniert allerdings völlig unabhängig von Hepcidin. Stattdessen spielen darin zwei Bakterien-Detektoren des Immunsystems, die Eiweiße TLR2 und TLR6, eine Schlüsselrolle. Sie setzen ebenfalls eine Kettenreaktion in Gang, die zum Abbau von Ferroportin führt. Wie diese Kettenreaktion im Detail abläuft, untersucht das Team gerade näher.

“Bisher stand bei der Suche nach neuen Therapien zur Behandlung der Anämie bei chronischen Erkrankungen hauptsächlich Hepcidin im Fokus, dabei ist der Hepcidin-Spiegel gar nicht bei allen Patienten erhöht“, so Professor Hentze. "Unsere Ergebnisse liefern erstmals einen alternativen Ansatz.”

„Wir wissen noch nicht, warum derselbe Schutzmechanismus, die Eiseneinlagerung in den Makrophagen, über zwei verschiedene Wege eingeleitet wird“, sagt Professor Muckenthaler, Abteilung Onkologie, Hämatologie, Immunologie und Pneumologie am Zentrum für Kinder- und Jugendmedizin Heidelberg. Es könne sich um eine zusätzliche Absicherung oder um Antworten auf jeweils unterschiedliche Krankheitserreger handeln. Oder der neu entdeckte Weg leite eine sofortige Reaktion am Ort des Bakterienkontaktes ein, während der Hepcidin-Signalweg erst später einsetze und körperweit wirke. „Wenn wir die Zusammenhänge besser verstehen, können wir gezielt eingreifen“, so die Molekularmedizinerin.

Das Universitätsklinikum Heidelberg und das European Molecular Biology Laboratory arbeiten bereits seit 2002 im Rahmen der Molecular Medicine Partnership Unit (MMPU) erfolgreich zusammen. Ziel der MMPU ist es, molekularbiologische Grundlagenforschung mit klinischer Medizin zu verknüpfen und so ein tieferes Verständnis für verschiedene Erkrankungen zu erlangen. Störungen des Eisen-Stoffwechsels nehmen dabei eine zentrale Rolle ein.

Ansprechpartner:
Professor Dr. Martina Muckenthaler
Leiterin der Sektion Molekulare Medizin
Zentrum für Kinder und Jugendmedizin
Universitätsklinikum Heidelberg
E-Mail: martina.muckenthaler@med.uni-heidelberg

Professor Dr. Matthias Hentze
EMBL Direktor, Heidelberg
E-Mail: matthias.hentze@embl.de

Das Europäische Laboratorium für Molekularbiologie (EMBL)

Das Europäische Laboratorium für Molekularbiologie (EMBL) ist Europas führendes Grundlagenforschungsinstitut in den Lebenswissenschaften, das sich über öffentliche Forschungsgelder seiner Mitgliedstaaten finanziert. Mehr als 80 unabhängige internationale Forschungsgruppen arbeiten hier interdisziplinär zu Themen des gesamten Spektrums der Molekularbiologie. Die 1800 Mitarbeiter des Instituts arbeiten an fünf Standorten: das Hauptlaboratorium in Heidelberg sowie Außenstellen in Hinxton bei Cambridge (Europäisches Bioinformatik-Institut), Grenoble, Hamburg und Monterotondo bei Rom. Die Kernaufgaben des 1974 als zwischenstaatliche Organisation gegründeten Instituts sind: molekularbiologische Grundlagenforschung; Ausbildung von Studenten, Wissenschaftlern und Gastwissenschaftlern; Serviceleistungen für Wissenschaftler in den Mitgliedstaaten; Entwicklung neuer Instrumente und Methoden für die Forschung sowie aktiver Technologietransfer und die Vernetzung der Biowissenschaften in Europa. Im internationalen Doktorandenprogramm des EMBL forschen rund 200 Studenten. Darüber hinaus fördert das Institut das Institut den Austausch mit der Öffentlichkeit durch Vortragsreihen, Besucherprogramme und aktive Wissenschaftskommunikation.

Universitätsklinikum und Medizinische Fakultät Heidelberg
Krankenversorgung, Forschung und Lehre von internationalem Rang

Das Universitätsklinikum Heidelberg ist eines der bedeutendsten medizinischen Zentren in Deutschland; die Medizinische Fakultät der Universität Heidelberg zählt zu den international renommierten biomedizinischen Forschungseinrichtungen in Europa. Gemeinsames Ziel ist die Entwicklung innovativer Diagnostik und Therapien sowie ihre rasche Umsetzung für den Patienten. Klinikum und Fakultät beschäftigen rund 12.600 Mitarbeiterinnen und Mitarbeiter und engagieren sich in Ausbildung und Qualifizierung. In mehr als 50 klinischen Fachabteilungen mit ca. 1.900 Betten werden jährlich rund 66.000 Patienten voll- bzw. teilstationär und mehr als 1.000.000 mal Patienten ambulant behandelt. Das Heidelberger Curriculum Medicinale (HeiCuMed) steht an der Spitze der medizinischen Ausbildungsgänge in Deutschland. Derzeit studieren ca. 3.500 angehende Ärztinnen und Ärzte in Heidelberg.

Weitere Informationen:

http://www.klinikum.uni-heidelberg.de/Willkommen.1035.0.html Abteilung Onkologie, Hämatologie, Immunologie und Pneumologie, Zentrum für Kinder- und Jugendmedizin Heidelberg
http://www.klinikum.uni-heidelberg.de/Molecular-Medicine-Partnership-Unit.114597... Molecular Medicine Partnership Unit (MMPU)
http://www.klinikum.uni-heidelberg.de/Iron-Homeostasis.114488.0.html Forschung zum Eisenstoffwechsel (Englisch)
http://www.embl.de/ European Molecular Biology Laboratory (EMBL)

Julia Bird | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzen gegen Staunässe schützen
17.10.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Erweiterung des Lichtwegs macht winzige Strukturen in Körperzellen sichtbar
17.10.2017 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart MES 2017: die Fertigung der Zukunft

18.10.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

18.10.2017 | Medizin Gesundheit

Rittal Klima-Tipps: Ist ein Kühlgerät wirklich nötig?

18.10.2017 | Energie und Elektrotechnik

Smartphones im Kampf gegen die Blindheit

18.10.2017 | Medizintechnik