Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Kampf ums Eisen

09.02.2015

Wie der Körper Krankheitserreger aushungert: Heidelberger Wissenschaftler des Universitätsklinikums Heidelberg und des Europäischen Laboratoriums für Molekularbiologie (EMBL) haben einen bisher unbekannten Mechanismus der Infektionsabwehr entdeckt / Neues Wissen könnte die Behandlung der Blutarmut bei chronischen Infektionen verbessern / Ergebnisse im Fachjournal „Blood“ veröffentlicht

Chronische Infektionen, wie sie häufig bei Menschen mit geschwächtem Immunsystem auftreten, führen indirekt auch zu einem Mangel an rotem Blutfarbstoff. Die Betroffenen leiden unter Anämie.


A new way mice keep iron (purple) out of reach of pathogens. IMAGE FROM GUIDA et al. BLOOD 2015

Nun haben Wissenschaftler des Universitätsklinikums Heidelberg und des Europäischen Laboratoriums für Molekularbiologie (EMBL) an Mäusen einen Signalweg entdeckt, der bei der Entstehung der Blutarmut eine wichtige Rolle spielt. Wird dieser Mechanismus in bestimmten Zellen des Immunsystems aktiviert, bunkern sie ab sofort alles Eisen, das sie aufnehmen. Was zunächst dazu dient, die Krankheitserreger auszuhungern, schadet schließlich auch dem eigenen Körper.

Das Eisen steht nämlich auch nicht mehr für die Bildung des roten Blutfarbstoffes zur Verfügung. Das Wissen um diesen bisher unbekannten Signalweg soll nun dazu beitragen, die Behandlung der Blutarmut bei chronischen Erkrankungen zu verbessern. Die Arbeit ist in der aktuellen Ausgabe des renommierten Fachjournals „Blood“ erschienen.

Bei der Bekämpfung von Bakterien setzt der Körper nicht nur auf den direkten Angriff durch Abwehrzellen. Gleichzeitig entzieht er den Eindringlingen einen lebenswichtigen Stoff: Eisen. Bei Säugetieren übernehmen diesen Job z.B. Makrophagen, die Fresszellen des Immunsystems. Sie verleiben sich beschädigte rote Blutkörperchen ein und verdauen sie.

Unter normalen Umständen geben sie das im Blutfarbstoff enthaltene Eisen zum Recycling wieder ins Blut ab. Bei einer Infektion halten sie das Eisen – sicher vor den Krankheitserregern – in ihrem Inneren zurück. Dazu reduzieren sie die Menge des Proteins Ferroportin, das Eisen aus dem Zellinnern nach außen transportiert.

Neuer Signalweg funktioniert unabhängig von bekanntem Eisen-Regulator

Bei der Frage nach dem Regulator für diesen Schutzmechanismus tippten Wissenschaftler bisher allein auf das Hormon Hepcidin. Es bindet an Ferroportin, sorgt für seinen Abbau und senkt so die Menge des verfügbaren Eisens im Körper. Der Signalweg, den Claudia Guida, Doktorandin in der Arbeitsgruppe um Professor Dr. Martina Muckenthaler, Universitätsklinikum Heidelberg, und Professor Dr. Matthias Henze, EMBL, nun entdeckte, funktioniert allerdings völlig unabhängig von Hepcidin. Stattdessen spielen darin zwei Bakterien-Detektoren des Immunsystems, die Eiweiße TLR2 und TLR6, eine Schlüsselrolle. Sie setzen ebenfalls eine Kettenreaktion in Gang, die zum Abbau von Ferroportin führt. Wie diese Kettenreaktion im Detail abläuft, untersucht das Team gerade näher.

“Bisher stand bei der Suche nach neuen Therapien zur Behandlung der Anämie bei chronischen Erkrankungen hauptsächlich Hepcidin im Fokus, dabei ist der Hepcidin-Spiegel gar nicht bei allen Patienten erhöht“, so Professor Hentze. "Unsere Ergebnisse liefern erstmals einen alternativen Ansatz.”

„Wir wissen noch nicht, warum derselbe Schutzmechanismus, die Eiseneinlagerung in den Makrophagen, über zwei verschiedene Wege eingeleitet wird“, sagt Professor Muckenthaler, Abteilung Onkologie, Hämatologie, Immunologie und Pneumologie am Zentrum für Kinder- und Jugendmedizin Heidelberg. Es könne sich um eine zusätzliche Absicherung oder um Antworten auf jeweils unterschiedliche Krankheitserreger handeln. Oder der neu entdeckte Weg leite eine sofortige Reaktion am Ort des Bakterienkontaktes ein, während der Hepcidin-Signalweg erst später einsetze und körperweit wirke. „Wenn wir die Zusammenhänge besser verstehen, können wir gezielt eingreifen“, so die Molekularmedizinerin.

Das Universitätsklinikum Heidelberg und das European Molecular Biology Laboratory arbeiten bereits seit 2002 im Rahmen der Molecular Medicine Partnership Unit (MMPU) erfolgreich zusammen. Ziel der MMPU ist es, molekularbiologische Grundlagenforschung mit klinischer Medizin zu verknüpfen und so ein tieferes Verständnis für verschiedene Erkrankungen zu erlangen. Störungen des Eisen-Stoffwechsels nehmen dabei eine zentrale Rolle ein.

Ansprechpartner:
Professor Dr. Martina Muckenthaler
Leiterin der Sektion Molekulare Medizin
Zentrum für Kinder und Jugendmedizin
Universitätsklinikum Heidelberg
E-Mail: martina.muckenthaler@med.uni-heidelberg

Professor Dr. Matthias Hentze
EMBL Direktor, Heidelberg
E-Mail: matthias.hentze@embl.de

Das Europäische Laboratorium für Molekularbiologie (EMBL)

Das Europäische Laboratorium für Molekularbiologie (EMBL) ist Europas führendes Grundlagenforschungsinstitut in den Lebenswissenschaften, das sich über öffentliche Forschungsgelder seiner Mitgliedstaaten finanziert. Mehr als 80 unabhängige internationale Forschungsgruppen arbeiten hier interdisziplinär zu Themen des gesamten Spektrums der Molekularbiologie. Die 1800 Mitarbeiter des Instituts arbeiten an fünf Standorten: das Hauptlaboratorium in Heidelberg sowie Außenstellen in Hinxton bei Cambridge (Europäisches Bioinformatik-Institut), Grenoble, Hamburg und Monterotondo bei Rom. Die Kernaufgaben des 1974 als zwischenstaatliche Organisation gegründeten Instituts sind: molekularbiologische Grundlagenforschung; Ausbildung von Studenten, Wissenschaftlern und Gastwissenschaftlern; Serviceleistungen für Wissenschaftler in den Mitgliedstaaten; Entwicklung neuer Instrumente und Methoden für die Forschung sowie aktiver Technologietransfer und die Vernetzung der Biowissenschaften in Europa. Im internationalen Doktorandenprogramm des EMBL forschen rund 200 Studenten. Darüber hinaus fördert das Institut das Institut den Austausch mit der Öffentlichkeit durch Vortragsreihen, Besucherprogramme und aktive Wissenschaftskommunikation.

Universitätsklinikum und Medizinische Fakultät Heidelberg
Krankenversorgung, Forschung und Lehre von internationalem Rang

Das Universitätsklinikum Heidelberg ist eines der bedeutendsten medizinischen Zentren in Deutschland; die Medizinische Fakultät der Universität Heidelberg zählt zu den international renommierten biomedizinischen Forschungseinrichtungen in Europa. Gemeinsames Ziel ist die Entwicklung innovativer Diagnostik und Therapien sowie ihre rasche Umsetzung für den Patienten. Klinikum und Fakultät beschäftigen rund 12.600 Mitarbeiterinnen und Mitarbeiter und engagieren sich in Ausbildung und Qualifizierung. In mehr als 50 klinischen Fachabteilungen mit ca. 1.900 Betten werden jährlich rund 66.000 Patienten voll- bzw. teilstationär und mehr als 1.000.000 mal Patienten ambulant behandelt. Das Heidelberger Curriculum Medicinale (HeiCuMed) steht an der Spitze der medizinischen Ausbildungsgänge in Deutschland. Derzeit studieren ca. 3.500 angehende Ärztinnen und Ärzte in Heidelberg.

Weitere Informationen:

http://www.klinikum.uni-heidelberg.de/Willkommen.1035.0.html Abteilung Onkologie, Hämatologie, Immunologie und Pneumologie, Zentrum für Kinder- und Jugendmedizin Heidelberg
http://www.klinikum.uni-heidelberg.de/Molecular-Medicine-Partnership-Unit.114597... Molecular Medicine Partnership Unit (MMPU)
http://www.klinikum.uni-heidelberg.de/Iron-Homeostasis.114488.0.html Forschung zum Eisenstoffwechsel (Englisch)
http://www.embl.de/ European Molecular Biology Laboratory (EMBL)

Julia Bird | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Gehirnregion vermittelt Genuss am Essen
22.08.2017 | Max-Planck-Institut für Neurobiologie

nachricht Ein Holodeck für Fliegen, Fische und Mäuse
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences