Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Evolution auf die Finger geschaut

14.10.2014

Die vergleichende Analyse der Photosynthese von Mais und Reis liefert wichtige Grundlagen für die Verbesserung von Nutzpflanzen.

Bei der Photosynthese fixieren Pflanzen Kohlendioxid (CO2). Das bedeutet, sie nehmen dieses Gas aus der Luft auf und wandeln es in Zucker um. Diese Umwandlung wird durch Lichtenergie angetrieben.


Wie die meisten Pflanzen, betreibt auch Reis die sogenannte C3-Photosynthese. Das ist die älteste und bei gemäßigten Wetterbedingungen auch die effektivste Form der Kohlendioxidfixierung.

© Max-Planck-Institut für Molekulare Pflanzenphysiologie


C4-Pflanzen wie Mais haben sich erst später entwickelt und zwar aus der Notwendigkeit auch mit wenig Kohlendioxid effektiv Photosynthese zu betreiben.

© Max-Planck-Institut für Molekulare Pflanzenphysiologie

Die Photosynthese ist essentiell für das Wachstum von Pflanzen und den Aufbau der von ihnen benötigten energiereichen Verbindungen wie beispielsweise Stärke, Fette oder Proteine. Aber nicht nur das, die Photosynthese bildet die Grundlage tierischen und menschlichen Lebens auf der Erde, da sich sowohl Tiere als auch Menschen von Pflanzen ernähren.

Durch evolutionäre Anpassungsprozesse haben sich verschiedene Formen der Photosynthese entwickelt, die in Abhängigkeit von den vorherrschenden Umweltbedingungen unterschiedlich effektiv arbeiten. So folgt die CO2-Fixierung in Mais zum Beispiel einem anderen Weg als die in Reis.

Eine aktuelle Studie, an der Wissenschaftler des Max-Planck-Instituts für Molekulare Pflanzenphysiologie beteiligt waren, geht diesen Unterschieden auf den Grund. Die Ergebnisse bilden eine wichtige Basis für die zukünftige Forschung und vor allem auch für die Optimierung von Nutzpflanzen hinsichtlich ihres Ertrags und ihrer Anpassung an steigende Temperaturen.

Photosynthese – Energiegewinnung in zwei Varianten

Die Photosynthese beider Pflanzen – Reis und Mais – unterscheidet sich in den Verbindungen, die bei der Fixierung von Kohlendioxid (CO2) als erstes gebildet werden. Bei Reis ist das ein Molekül mit drei Kohlenstoffatomen (C), das sogenannte 3-Phosphoglycerat. Entsprechend der Anzahl der Kohlenstoffatome spricht man von C3-Photosynthese und von C3-Pflanzen. Bei den meisten Pflanzen handelt es sich um C3-Pflanzen, neben Reis gehört auch Weizen dazu und damit zwei der weltweit wichtigsten Nutzpflanzen.

Die C3-Photosynthese ist die älteste und bei gemäßigten Temperatur- und Lichtverhältnissen auch die effektivere Art der CO2-Fixierung. Bei steigenden Temperaturen und Trockenheit, wird die C3-Photosynthese jedoch ineffektiv.

Um eine erhöhte Wasserverdunstung zu verhindern, schließen Pflanzen dann nämlich ihre Spaltöffnungen, wodurch aber auch die CO2-Aufnahme unterbunden wird und die Photosynthese-Leistung sinkt. Vor 25 - 32 Millionen Jahren hat sich, aufgrund des sinkenden CO2-Gehalts in der Atmosphäre, eine weitere Form der Photosynthese entwickelt.

Unter diesem Selektionsdruck ist die C4-Photosynthese entstanden. Statt des 3-Phosphoglycerats wird hier bei der CO2-Fixierung eine Verbindung mit vier Kohlenstoffatomen namens Oxalacetat gebildet. Zu den C4-Pflanzen zählen viele Pflanzenarten der Tropen und Subtropen, die sich durch eine hohe Biomasseproduktion auszeichnen, dazu gehören unter anderem Mais, Zuckerrohr und Hirse.

Der Grund für die größere Effektivität der C4-Pflanzen bei höheren Temperaturen beruht darauf, dass sie im Unterschied zu den C3-Pflanzen auch bei geschlossenen Spaltöffnungen weiterhin Photosynthese betreiben können. Ermöglicht wird ist dies dadurch, dass der Photosynthese-Prozess, anders als bei C3-Pflanzen, in zwei voneinander getrennten Zelltypen abläuft und selbst geringste Mengen CO2 für die Photosynthese genutzt werden können.

Photosyntheseforschung - Beitrag zur Ernährungssicherung

Die wachsende Weltbevölkerung sowie der Rückgang landwirtschaftlich nutzbarer Flächen gepaart mit den prognostizierten Folgen des Klimawandels erfordern neue Konzepte zur Ertragssicherung. „Ein Ansatz könnte darin bestehen C3-Pflanzen die Möglichkeit zur C4-Photosynthese zu verleihen“, sagt Prof. Dr. Mark Stitt vom MPI-MP, „ Dies erfordert jedoch sehr genaue Kenntnisse zur Entstehung dieser Photosyntheseform.“

Aus diesem Grund hat ein internationales Forscherteam, unter Beteiligung von Wissenschaftlern aus den USA, Kanada und China, sowie dem MPI-MP in Golm, detaillierte Analysen an Blättern von Reis und Mais durchgeführt. Geleitet wurden diese Studien von Thomas P. Brutnell am Donald Danforth Plant Science Center in St. Louis (USA). Die Wissenschaftler des MPI-MP haben verschiedene Inhaltsstoffe in den Blättern beider Pflanzen analysiert.

„Wir haben die Blätter in mehrere Zonen unterteilt, um Informationen über ihre verschiedenen Entwicklungsstadien zu gewinnen, von altem Gewebe an der Blattbasis bis zu ganz jungem an der Spitze der Blätter“, erklärt Dr. Alisdair Fernie vom MPI-MP die Vorgehensweise. Die Wissenschaftler um Thomas Brutnell am Donald Danforth Plant Science Center entwickelten eine statistische Methode, mit der sich die gewonnenen Messdaten aus Mais und Reis miteinander vergleichen ließen.

„Gemeinsam konnten wir verschiedene Faktoren in den Blättern identifizieren, die wahrscheinlich an der Steuerung der Photosynthese beteiligt sind“, sagt Dr. Fernie, „Diese Faktoren scheinen ausschlaggebend dafür zu sein, ob die Pflanze C3- oder C4-Photosynthese betreibt. Außerdem konnten wir Unterschiede im Kohlenstoff- und Stickstoffstoffwechsel von C3- und C4-Pflanzen feststellen.“

Um diese vergleichenden Daten auch anderen Wissenschaftlern zur Verfügung zu stellen, veröffentlicht das internationale Forscherteam umfangreiche Datentabellen im Internet. „Unsere Daten können so als Quelle für weitere Forschungsarbeiten zur Photosynthese genutzt werden“, fasst Prof. Dr. Stitt zusammen, „Diese Forschung bildet die Grundlage zur Verbesserung der Kohlendioxidfixierung in unseren Nutzpflanzen und hilft, auch in Zukunft die landwirtschaftlichen Erträge zu sichern.“

KD

Kontakt

Prof. Dr. Dr. h.c. Mark Stitt
Direktor Abteilung 2: Metabolische Netzwerke
Arbeitsgruppenleiter "Systemregulation"
Max-Planck-Institut für Molekulare Pflanzenphysiologie
Tel. 0331/567 8211
MStitt@mpimp-golm.mpg.de

Dr. Alisdair Fernie
Arbeitsgruppenleiter – Zentraler Metabolismus
Max-Planck-Institut für Molekulare Pflanzenphysiologie
Tel. 0331/567 8211
Fernie@mpimp-golm.mpg.de

Dr. Kathleen Dahncke
Referentin für Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Molekulare Pflanzenphysiologie
Tel. 0331/567 8275
Dahncke@mpimp-golm.mpg.de

Weitere Informationen:

http://www.nature.com/nbt/journal/vaop/ncurrent/full/nbt.3019.html - Link zur Originalpublikation in Nature Biotechnology
http://www.mpimp-golm.mpg.de/1962932/Der_Evolution_auf_die_Finger_geschaut?c=408... - Pressemitteilung auf den Seiten des MPI-MP
http://www.mpimp-golm.mpg.de/2400/dep_2 - Seite der Abteilung von Prof Dr. Dr. h.c. Mark Stitt
http://www.mpimp-golm.mpg.de/2410/fernie - Seite der Arbeitsgruppe von Dr. Alisdair Fernie

Ursula Ross-Stitt | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher finden Hinweise auf verknotete Chromosomen im Erbgut
20.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Aus der Moosfabrik
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise