Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Einfluss des Menschen auf das Artensterben

10.02.2015

JLU-Biologe Prof. Dr. Thomas Wilke koordiniert Teil des EU-Großprojekts „PRIDE – Entstehung und Verlust von Biodiversität in der Pontokaspis“ – Internationales Forscherteam untersucht Region um Kaspisches Meer, Schwarzes Meer und Aralsee

Seit Jahrmillionen entstehen auf der Erde neue Arten und sterben aus natürlichen Gründen wieder aus. Mittlerweile hat das Artensterben aber weltweit besorgniserregende Ausmaße angenommen, zu einem erheblichen Teil versursacht durch den Menschen.


Prof. Dr. Thomas Wilke

Foto: Thorsten Hauffe

Ein internationales Team unterschiedlichster Fachrichtungen – darunter der Biologe Prof. Dr. Thomas Wilke von der Justus-Liebig-Universität Gießen (JLU) – wird in den kommenden Jahren in einem EU-finanzierten Großprojekt („PRIDE – Entstehung und Verlust von Biodiversität in der Pontokaspis“) die natürlichen und die menschlichen Faktoren beim Werden und Vergehen von Arten genauer untersuchen.

„Nur wenn der menschliche Einfluss genau benannt und quantifiziert werden kann, ist die zielgerichtete Etablierung von Schutzmaßnahmen möglich“, betont Prof. Wilke, der den biologischen Teil des Projekts koordiniert. Die Gesamtkoordination des Projekts liegt beim niederländischen Naturalis Biodiversity Center in Leiden.

Forschungsgebiet der PRIDE-Wissenschaftlerinnen und -Wissenschaftler ist die sogenannte Pontokaspis, die Region um Schwarzes Meer, Kaspisches Meer und den Aralsee. Sie gilt derzeit noch als eine der artenreichsten Brackwasserregionen der Erde, ist aber so stark vom Artensterben betroffen, dass bereits von einer „Pontokaspischen Biodiversitätskrise“ die Rede ist.

Die Gewässer sind „Reste“ des subtropischen Urmeers Parathetys, das über Millionen von Jahren weite Teile Europas und Asiens bedeckte. In der Paratethys kam es durch globale Umweltveränderungen zur Entstehung von hunderten ja sogar tausenden neuen Arten, die dann durch natürliche Prozesse wieder ganz oder teilweise verschwunden sind.

Das unter anderem aus den Fachrichtungen Biologie, Paläontologie, Geologie und Ökologie zusammengesetzte Forscherteam hat sich zum Ziel gesetzt, die natürlichen und menschlichen Einflüsse bei der Artbildung, insbesondere aber beim Aussterben von Arten, in der Pontokaspis modellhaft zu quantifizieren und darauf aufbauend zielgerichtete und effiziente Maßnahmen zum Erhalt der verbleibenden Biodiversität abzuleiten.

Das Projekt mit dem englischen Originaltitel „Drivers of Pontocaspian biodiversity Rise and Demise“ („PRIDE“) gehört zur Förderlinie der Marie Curie Initial Training Networks und gibt 15 Nachwuchswissenschaftlerinnen und -wissenschaftlern die Möglichkeit, diese Fragestellungen gemeinsam und interdisziplinär zu bearbeiten. Es läuft über vier Jahre mit einem Gesamtvolumen von 3,8 Millionen Euro; die JLU erhält rund 750.000 Euro.

„Wir forschen seit fast 30 Jahren in der Pontokaspis, und der Verlust von Arten, den wir erleben müssen, ist erschreckend“, erklärt Prof. Wilke, Professor für Spezielle Zoologie und Biodiversitätsforschung an der JLU. „Um Artbildung und das Aussterben von Arten besser verstehen zu können, wollen wir diese Prozesse über einen Zeitraum von etwa zwei Millionen Jahren mit Hilfe von Fossilien rekonstruieren.“

Informationen erhalten die Wissenschaftlerinnen und Wissenschaftler dabei auch durch den DNA-Vergleich von heute lebenden Arten und der Modellierung zurückliegender Ereignisse mit Hilfe sogenannter „molekularer Uhren“. Die Zeitpunkte des Entstehens und Aussterbens von Arten sollen im Anschluss mit geologischen Ereignissen und Klimaveränderungen abgeglichen werden, um deren Einfluss auf Evolutionsprozesse in einem komplexen Modell zu quantifizieren.

„Dies hilft uns, natürliche Veränderungen in der Biodiversität über die Zeit zu verstehen. Das Modell wird dann genutzt, um den heutigen menschlichen Einfluss exakter zu quantifizieren und insbesondere die Faktoren zu bestimmen, die gegenwärtig den größten Einfluss auf die Biodiversitätskrise in der Pontokaspis haben“, erläutert Prof. Wilke das einzigartige Forschungsvorhaben.

Das EU-Großprojekt ist eine wertvolle Ergänzung des lebenswissenschaftlichen Schwerpunktbereichs der JLU. Insbesondere stelle dieses Vorhaben einen konsequenten Forschungstransfer aus dem von der JLU koordinierten DAAD-Exzellenzzentrum CEMarin dar, betont Prof. Wilke, der auch das CEMarin leitet. „Dort untersuchen wir natürliche und anthropogene Veränderungen in der südlichen Karibik. Die sich aus dem Projekt PRIDE ergebenden Impulse und Synergien, sowohl für die Ausbildung von Nachwuchswissenschaftlerinnen und -wissenschaftlern als auch für das bessere Verständnis von evolutionsbiologischen Prozessen in Zeit und Raum sind faszinierend, aber auch herausfordernd.“

Kontakt:

Prof. Dr. Thomas Wilke, Institut für Tierökologie und Spezielle Zoologie
Heinrich-Buff-Ring 26-32 (IFZ), 35392 Gießen
Telefon: 0641 9935720
E-Mail: tom.wilke@allzool.bio.uni-giessen.de

Weitere Informationen:

http://www.uni-giessen.de/wilke

Lisa Dittrich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie