Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Demenzerkrankungen - Defekte zelluläre Müllabfuhr erhöht das Risiko

03.07.2014

Ein Forschungsteam hat erstmals einen Mechanismus identifiziert, der mehrere verschiedene Gehirnerkrankungen beeinflusst – möglicherweise liefern die Ergebnisse einen Weg, wie Demenz auch nach Krankheitsausbruch verzögert werden kann.

Demenzerkrankungen nehmen in unserer alternden Gesellschaft stetig zu und stellen schon jetzt das Gesundheitssystem vor große Herausforderungen.

Ein internationales Forschungsteam unter der Leitung von Professor Christian Haass und Gernot Kleinberger, Adolf-Butenandt-Institut der LMU und Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), hat nun einen Mechanismus gefunden, der das Risiko für den Ausbruch verschiedener Demenzerkrankungen erhöht.

Neurodegenerative Erkrankungen wie Alzheimer-, Parkinson oder Frontotemporale Demenz haben gemeinsam, dass es im Gehirn der Patienten zu einer vermehrten Ablagerung von Eiweißbestandteilen und zu massivem Zelltod kommt.

Sterbende Zellen sowie abgelagerte Abfallprodukte müssen von Fresszellen effizient entsorgt werden um weitere Schäden an den Nervenzellen zu vermeiden. Diese Fresszellen – sogenannte Mikroglia – spielen somit als „Gesundheitspolizei“ des Gehirns eine wichtige Rolle. Sie kommen nur im zentralen Nervensystem vor und sind ein Teil des zellulären Immunsystems.

Wie das Team um Haass nun in dem Journal „Science Translational Medicine“ berichtet, führen Erbveränderungen zu einem Defekt in dem Protein TREM2, das in Mikroglia die Aufnahme von Abfallprodukten steuert. TREM2 reicht als Transmembranprotein durch die Wand der Nervenzelle hindurch und besitzt eine extrazelluläre Domäne, die für die Identifikation von Abfallprodukten wichtig ist.

„Wir vermuten, dass der Defekt dazu führt, dass das Protein bei seiner Produktion in der Zelle falsch gefaltet wird und nicht mehr an die Oberfläche der Mikroglia gelangt“, sagt Kleinberger, „dadurch wird die Abfallmenge, die die Mikroglia bewältigen kann, deutlich vermindert“. Dies hat zur Folge, dass sich Eiweißablagerungen, aber auch tote Zellen, im Gehirn ansammeln und nicht mehr abgebaut werden können.

Mit ihrer neuen Studie konnten die Wissenschaftler damit erstmals einen Mechanismus identifizieren, der mehrere verschiedene Gehirnerkrankungen beeinflussen kann. „Darüberhinaus eröffnen unsere Entdeckungen vielleicht auch einen Weg, wie man den Krankheitsverlauf auch noch nach Ausbruch der Demenz verzögern könnte, was sich bisher als unmöglich erwies“, sagt Haass, „erste Hinweise dazu liefert ein Ansatz, bei dem es uns mithilfe bestimmter Wirkstoffe gelang, den Fressmechanismus der Mikroglia zu stimulieren“.
(Science Translational Medicine 2014) göd

Publikation:
TREM2 mutations linked to neurodegeneration impair cell surface transport and phagocytosis
G. Kleinberger, Y. Yamanishi, M. Suárez-Calvet, E. Czirr, E. Lohmann, E. Cuyvers, H. Struyfs, N. Pettkus, A. Wenninger-Weinzierl, F. Mazaheri, S. Tahirovic, A. Lleó, D. Alcolea, J. Fortea, M. Willem, S. Lammich, J. L. Molinuevo, R. Sanchez-Valle, A. Antonell, A. Ramirez, M. Heneka, K. Sleegers, J. van der Zee, J.-J. Martin, S. Engelborghs, A. Demirtas-Tatlidede, H. Zetterberg, C. Van Broeckhoven, H. Gurvit, T. Wyss-Coray, J. Hardy, M. Colonna & C. Haass
Science Translational Medicine 2014
http://stm.sciencemag.org/content/6/243/243ra86

Kontakt:
Prof. Dr. Dr. h.c. Christian Haass und Dr. Gernot Kleinberger
Adolf Butenandt-Institut, Ludwig-Maximilians Universität München
& Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. - München
Tel: (+49-89)-2180 75 - 471 (C.H.), -472 (Secretariat)
E-Mail: christian.haass@dzne.lmu.de
http://www.biochemie.abi.med.uni-muenchen.de/about/staff/professors/haass/index....

Luise Dirscherl | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics