Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem Riff-Paradoxon auf der Spur

30.10.2015

Bremer Meeresbiologen erklären, weshalb tropische Korallenriffe trotz nährstoffarmer Umgebung so produktiv sind. Die Forschungsergebnisse sind jetzt in der Fachzeitschrift „Proceedings of the Royal Society“ veröffentlicht worden.

Tropische Korallenriffe sind die artenreichsten Lebensräume auf unserem Planeten. Gleichzeitig sind sie auch sehr produktiv, obwohl sie in extrem nährstoffarmen Meeresgebieten beheimatet sind.


Hälterung von Steinkorallen-Fragmenten für nachfolgende Inkubationsexperimente

Foto: Dr. Malik Naumann


Eine der untersuchten Korallenarten (die Griffelkoralle Stylophora) mit geöffneten Polypententakeln bei Nacht

Foto: Dr. Ulisse Cardini

Dieses sogenannte Riff-Paradoxon, das schon 1842 von Charles Darwin formuliert wurde, beschäftigt bis heute die Wissenschaft. Besonders Stickstoff ist ein absolutes Mangelelement in Korallenriffen, wenngleich dieses Element sehr wichtig ist für Wachstumsprozesse, da es in den Proteinen und der DNA aller Organismen zu finden ist.

Nun ist es einer Gruppe von Meeresbiologen unter Leitung eines Wissenschaftlers der Universität Bremen gelungen, eine plausible Erklärung für das Riff-Paradoxon zu liefern: Die Umwandlung von Stickstoff – die Stickstofffixierung – durch Mikroorganismen, die mit Korallen assoziiert sind, unterstützt offensichtlich die Umwandlung von Kohlenstoff – die Kohlenstofffixierung – durch Mikroalgen im Korallengewebe.

Dies ist die Haupterkenntnis einer Bremer Studie, die am 28. Oktober 2015 in der renommierten Fachzeitschrift „Proceedings of the Royal Society“ veröffentlicht wurde.

Korallen-Holobionten

Korallen sind zwar Tiere, sogenannte Nesseltiere, aber in ihrem Gewebe leben so viele Mikroalgen und andere Mikroorganismen wie Bakterien, dass sie eigene Mikro-Ökosysteme, sogenannte Holobionten, darstellen. Mit Hilfe ihrer kleinen Mitbewohner sind Korallen-Holobionten in der Lage, einige Prozesse durchzuführen, die für Tiere völlig untypisch sind.

Besonders wichtig für die Produktivität von Korallen ist die Kohlenstofffixierung über die Photosynthese der Mikroalgen: Hier wird Kohlendioxid mit Hilfe von Lichtenergie umgewandelt in organisches Material. Durch diesen Prozess sind Korallen in der Lage, extrem hohe Wachstumsraten zu erreichen und nicht nur Lebensräume sondern auch Nahrung für andere Organismen zu schaffen. Korallen-Holobionten führen die Kohlenstofffixierung in einer außergewöhnlichen Intensität durch, und das, obwohl sie fast keinen Stickstoff zur Verfügung haben, um daraus Biomasse zu bilden.

Wie kommt das Paradoxon zustande?

Können gleichzeitig stattfindende Prozesse, vor allem Stickstofffixierung durch Bakterien und Kohlenstofffixierung durch Mikroalgen, eine Rolle gespielt haben? Genau diese unorthodoxe Fragestellung beschäftigt den Bremer Meeresökologen Professor Christian Wild seit langer Zeit.

Mit Mitteln der Deutschen Forschungsgemeinschaft (DFG) erforschte er gemeinsam mit mehreren Doktoranden – v.a. dem italienischen Nachwuchswissenschaftler Ulisse Cardini als Erstautor der Studie – und Kollegen den Zusammenhang zwischen Kohlenstoff- und Stickstofffixierung durch Korallen.

Das Team untersuchte diese Prozesse an allen dominanten Steinkorallen aus einem Korallenriff des nördlichen Roten Meers in Jordanien während mehrerer langer Expeditionen in allen Jahreszeiten des Jahres 2013. Das Besondere am Untersuchungsstandort war die hohe Saisonalität, das heißt eine starke natürliche Schwankung der Nährstoffkonzentrationen im Wasser zwischen den Jahreszeiten.

Überraschenderweise war aber die Kohlenstofffixierung aller Korallen über das gesamte Jahr sehr konstant. Das galt sogar für den Sommer, wenn die Nährstoffkonzentrationen besonders niedrig waren. Der Schlüssel für diesen Befund lag offensichtlich in der Stickstofffixierung der Mikroorganismen. Diese war, das ergab eine Vielzahl von Messungen, im Sommer ungefähr um das Zehnfache erhöht im Vergleich zu den anderen Jahreszeiten.

Die Befunde der Studie in ihrer Gesamtheit deuten darauf hin, dass durch die Stickstofffixierung der Mikroorganismen die im Sommer vorherrschende extreme Stickstoff-Limitierung überwunden wurde. Prozesse durch Bakterien unterstützen also Prozesse durch Mikroalgen im Korallengewebe, so dass letztendlich nicht nur das Tier, sondern auch das ganze Riff, davon profitiert.

Insofern betritt die Publikation von Cardini et al. in mehrfacher Hinsicht wissenschaftliches Neuland. Es wird klar, wie die einzelnen Prozesse der unterschiedlichen Korallenbewohner miteinander verzahnt sind. Und es deutet sich weiterhin an, dass die wichtige Rolle von Mikroorganismen in diesem Zusammenhang bisher unterschätzt wurde. Die Erkenntnisse des internationalen Forscherteams um den Bremer Professor Christian Wild und seinem Mitarbeiter Dr. Ulisse Cardini liefern eine neue wichtige Erklärung für das Darwinsche Riffparadoxon.

Weitere Informationen:

Universität Bremen
Fachbereich Biologie / Chemie
Marine Ökologie
Prof. Dr. Christian Wild
Tel. 0421 218 63387
E-Mail: christian.wild@uni-bremen.de

Eberhard Scholz | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bremen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzen können drei Eltern haben
18.10.2017 | Universität Bremen

nachricht Forscher lösen Bremse des Immunsystems
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mobilität 4.0: Konferenz an der Jacobs University

18.10.2017 | Veranstaltungen

Smart MES 2017: die Fertigung der Zukunft

18.10.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Biokunststoffe könnten auch in Traktoren die Richtung angeben

18.10.2017 | Messenachrichten

»ILIGHTS«-Studie gestartet: Licht soll Wohlbefinden von Schichtarbeitern verbessern

18.10.2017 | Energie und Elektrotechnik

IVAM-Produktmarkt „High-tech for Medical Devices“ auf der COMPAMED 2017

18.10.2017 | Messenachrichten