Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem Ribosom bei der Arbeit zuschauen

18.12.2015

Ein neues statistisches Verfahren könnte dabei helfen, die Funktion von bisher unbekannten Genen aufzuklären. Forscherinnen und Forscher um Uwe Ohler vom Berlin Institute for Medical Systems Biology (BIMSB) am Max-Delbrück-Centrum für Molekulare Medizin (MDC) haben eine Filtermethode aus der Sprachsignalverarbeitung adaptiert und getestet, die Sequenzierdaten besser interpretierbar macht. „Wir können damit dem Ribosom bei der Arbeit zuschauen“, sagt Uwe Ohler. Für die Studie kooperierte das Labor von Uwe Ohler mit Kolleginnen und Kollegen aus den BIMSB-Gruppen um Markus Landthaler, Benedikt Obermayer und Matthias Selbach.

Ein neues statistisches Verfahren könnte dabei helfen, die Funktion von bisher unbekannten Genen aufzuklären. Forscherinnen und Forscher um Uwe Ohler vom Berlin Institute for Medical Systems Biology (BIMSB) am Max-Delbrück-Centrum für Molekulare Medizin (MDC) haben eine Filtermethode aus der Sprachsignalverarbeitung adaptiert und getestet, die Sequenzierdaten besser interpretierbar macht. „Wir können damit dem Ribosom bei der Arbeit zuschauen“, sagt Uwe Ohler.


Die RiboTaper-Strategie: a) Die Multitaper-Methode (Thomson, 1982) spürt in den Ribo-seq-Signalen ein 3-Nukleotid-Muster auf. Das zeigt an, dass dort eine Translation stattfindet. Die rote Linie zeigt die statistische Schwelle (p-Wert 0,5). Mit diesem Ansatz konnten bekannte und neue “Open Reading Frames” identifiziert werden (hier am Beispiel des Gens MRPS21). b) Tausende dieser Open Reading Frames wurden in kodierenden und nicht-kodierenden Gen-Regionen entdeckt. TPM steht für “transcript per million”. Abb.: AG Ohler

Uwe Ohler hat sich während seines Studiums mit Spracherkennungsprogrammen beschäftigt. Der Informatiker nutzte statistische Verfahren, um aus den durch Nebengeräusche „verrauschten“ Daten die für eine korrekte Erkennung von Wörtern relevanten Informationen herauszufiltern. Die hierfür genutzten mathematischen Methoden, zu denen beispielsweise die Fourier-Transformation gehört, sind aus der modernen Datenverarbeitung längst nicht mehr wegzudenken.

Egal, ob Astrophysiker Spektren im Licht von fernen Sternen untersuchen oder ob es um Spracherkennung in Handys geht: immer müssen „verrauschte“ Signale möglichst korrekt interpretiert werden. Jetzt wendet Ohler diese Filtermethoden auf die Molekularbiologie an.

Gemeinsam mit Kolleginnen und Kollegen vom Berlin Institute für Medical Systems Biology (BIMSB) am MDC hat er „RiboTaper“ entwickelt und getestet. Das Programm filtert aus bestimmten Sequenzier-Daten die relevanten Informationen heraus, ob eine der zellulären Proteinfabriken – die Ribosomen – auf einer RNA tatsächlich aktiv ist.

„RiboTaper“ baut dabei auf ein Labor-Verfahren auf, das vor einigen Jahren in den USA entwickelt wurde. Es heißt Ribo-seq und dient der Identifizierung von Genen, die für ein Protein kodieren. Das ist insofern wichtig, als der Lehrsatz, dass die DNA Bauanleitungen für Proteine enthält, nicht ganz stimmt. Tausende von Genen, die in den letzten Jahren im Genom kartiert wurden, werden zwar in RNA transkribiert, aber es ist nicht bekannt, ob sie eventuell kleine, proteinkodierende Abschnitte enthalten.

Insgesamt ist nur ein kleiner Teil des Genoms dafür zuständig, Eiweiße zu produzieren. Der weit größere Anteil der DNA hat regulatorische Funktionen. Hinzu kommt: Von Zelle zu Zelle werden unterschiedliche Gene manchmal hoch- und manchmal heruntergeregelt oder stillgelegt. Wie aber findet man nun heraus, aus welchen Gene in welcher Zelle tatsächlich Protein produziert werden sind und aus welchen gerade nicht?

Dazu muss man sich die Ribosomen anschauen und die Bauanleitungen, nach denen sie arbeiten. Hier hilft Ribo-seq, denn das Verfahren aus dem „wet lab“ friert gewissermaßen die Ribosomen dort fest, wo sie am RNA-Strang sitzen. Die RNA ist die aus den Genen übermittelte Bauanleitung. Alles außer Ribosom und der damit verbundenen RNA werden mit biochemischen Werkzeugen verdaut.

Das ermöglicht den Molekularbiologen festzustellen, mit welcher Anleitung die Ribosomen gerade arbeiten. Das Problem dabei: Die Daten, die man mit Ribo-seq erhält, sind „verrauscht“. Es gibt in jeder Zelle winzige Reste von DNA, RNA und Proteinen, die natürlicherweise entstehen und abgebaut werden.

Hinzu kommt, dass man nie genau weiß, ob die Ribosomen an der identifizierten Stelle auf den RNAs auch wirklich aktiv sind und Proteine produzieren oder ob sie gewissermaßen erst auf ein weiteres Signal warten. Die „dry lab“-Methode RiboTaper soll diese Informationlücke schließen helfen. Damit können die Rollen von DNA, RNA und Ribosomen viel genauer als bisher aufgeklärt werden.

„Wir wissen beispielsweise, dass ein bestimmtes Ribosom gewöhnlich 29 RNA-Bausteine – die Nukleotide – abdeckt“, erzählt Uwe Ohler. „Und wir wissen auch, dass das Ribosom entlang der RNA immer in Abständen von 3 Nukleotiden entlang wandert.“ So entsteht ein periodisches Muster, nach dem die Bioinformatiker in all den Daten suchen können.

„Das zeigt uns dann, an welchen Stellen der RNA etwas Signifikantes passiert“, sagt Ohler. Das kann man sich vielleicht ein bisschen vorstellen, wenn man an eine Küche denkt, die ausgebrannt ist. Die Spurensicherung untersucht nun die Küche und findet Hinweise auf Mehl, Eier und Zucker sowie Rezeptseiten. Aber war der Kuchen fertig, als die Küche gebrannt hat? Oder standen nur die Zutaten für den Teig bereit? Was hatte der Koch vor zu backen? Mit Ribo-seq in Kombination mit RiboTaper kommt die molekularbiologische Spurensicherung nun dem Geheimnis der zellulären Küche ein gutes Stück näher.

Uwe Ohler erklärt: „Mit RiboTaper können wir in bislang wenig studierten Genen Jagd auf kleine Proteine machen und dazu beitragen, widersprüchliche Dateninterpretationen aufzuklären.“ Ohler sieht noch einen Vorteil: „Sequenziergeräte stehen heutzutage in vielen Labors, aber nur wenige Zentren haben auch eine gute Massenspektrometrie zur Hand. Mit RiboTaper können wir aus den Sequenzierdaten Schlüsse ziehen, was gerade translatiert wird.“

Um das neue Verfahren zu testen, hat Ohler die Probe aufs Exempel gemacht und bei seinem MDC-Kollegen Matthias Selbach die RiboTaper-Daten mittels Massenspektrometrie überprüfen lassen. Nachdem es bereits eine ganze Reihe von Gruppen am MDC gibt, die Ribo-seq nutzen, dürfte es spannend sein, wie RiboTaper ihnen bei der Interpretation zu helfen vermag.

Für die Studie kooperierte das Labor von Uwe Ohler mit Kolleginnen und Kollegen aus den BIMSB-Gruppen um Markus Landthaler, Benedikt Obermayer und Matthias Selbach.

Ansprechpartner für Medien:
Josef Zens
presse@mdc-berlin.de
+49-30-9406-2118

Weitere Informationen:

http://www.nature.com/nmeth/journal/vaop/ncurrent/full/nmeth.3688.html (Link zur Studie)
https://insights.mdc-berlin.de/de/2015/12/dem-ribosom-bei-der-arbeit-zuschauen/ (Link zum selben Text mit wissenschaftlicher Abbildung)
https://insights.mdc-berlin.de/en/2015/12/watching-the-ribosome-at-work/ (Übersetzung der Pressemitteilung)

Josef Zens | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie