Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Datenflut aus dem Blut

31.03.2009
Vom harmlosen Schnitt in den Finger bis zum lebensbedrohlichen Schlaganfall: Wenn die Blutgerinnung gestört ist, hat das für den Betroffenen immer gravierende Folgen. Wie dieser Prozess im Detail abläuft, will ein neuer interdisziplinärer Forschungsverbund aufklären. Drei zentrale Teilprojekte laufen an der Universität Würzburg.

Blutplättchen, in der Fachsprache "Thrombozyten" genannt, sind die kleinsten bekannten Zellen im menschlichen Organismus. Gerade mal zwei bis fünf Tausendstel eines Millimeters groß übernehmen sie im Körper doch eine zentrale Aufgabe:

Kommt es zu einer Verletzung an einem Blutgefäß, sammeln sich die Plättchen an der undichten Stelle, ballen sich zusammen und stillen so die Blutung. Ein wichtiger Mechanismus fürs Überleben. Gefährlich wird es hingegen, wenn die Thrombozyten sich ohne erkennbaren Anlass zu einem Gerinnsel zusammenlagern: Dann können Gefäße verstopfen; es drohen Herzinfarkt oder Schlaganfall.

2,5 Millionen Euro für die kommenden drei Jahre

Wie die Blutgerinnung funktioniert, ist noch immer nicht bis ins letzte Detail geklärt. Licht ins Dunkel bringen soll ein großes Forschungs-Verbundprojekt, das jetzt vom Bundesforschungsministerium ins Leben gerufen wurde.

Wissenschaftler an sechs Standorten und aus unterschiedlichen Fachrichtungen, aus Uni und der Industrie, werden darin gemeinsam arbeiten. Dafür erhalten sie in den nächsten drei Jahren 2,5 Millionen Euro. Der Name des Projekts: "Sara - Systembiologie der humanen Plättchen-ADP-Rezeptor-Antagonisten".

"Auch wenn die Thrombozyten so überaus klein sind, arbeiten in ihnen doch Tausende von Proteinen zusammen und sorgen so für ihr Funktionieren", sagt Dr. Jörg Geiger. Geiger ist Wissenschaftlicher Angestellter am Institut für Klinische Biochemie und Pathobiochemie der Universität Würzburg (Professor Ulrich Walter). Im Forschungsverbund leitet er ein Teilprojekt, das den medizinischen und biochemischen Schwerpunkt bildet.

Genaues Verständnis der Abläufe in der Zelle

Ausgangspunkt seiner Arbeit ist die Beobachtung, dass zwei Stoffe - das ADP und ein Prostaglandin - unterschiedliche Rezeptoren in der Zellwand der Thrombozyten aktivieren, die ihrerseits über verschiedene Zwischenstufen die Aggregation der Thrombozyten hemmen oder stimulieren. "Über diesen Prozess wissen wir zwar schon einiges; viele Fragen sind aber noch offen", sagt Geiger. Die Antworten soll das Verbundprojekt liefern - was mit einem enormen Aufwand verbunden sein wird.

"Wenn wir die unterschiedlichen Regelkreise verstehen wollen, müssen wir zuvor die daran beteiligten Proteine der Thrombozyten kennen", sagt Geiger. Das ist der Punkt, an dem ein Ex-Würzburger ins Spiel kommt: Albert Sickmann, bis vor kurzem Arbeitsgruppenleiter am hiesigen Rudolf-Virchow-Zentrum, jetzt Professor an der Universität Dortmund. Sickmanns Spezialität ist es, mit Hilfe der Massenspektrometrie genaue Aussagen über die Zusammensetzung des zu untersuchenden Materials zu liefern. Mit Hilfe dieser Technik ist es möglich, beteiligte Proteine des Thrombozyten und deren Veränderungen, etwa bei Gerinnungsvorgängen, direkt zu messen und damit weiteres Licht in diese komplexen Vorgänge zu bringen.

Bioinformatiker basteln am Netzwerk der Signalketten

Geiger und seine Mitarbeiter liefern die Proben; Sickmann untersucht sie - und dann? "Dann bricht eine immense Datenflut mit einem hohen Grad an Komplexität über uns herein, die der Weiterverarbeitung bedarf", erklärt Jörg Geiger. Eine Aufgabe, der sich der nächste Würzburger Forscher annehmen wird: Thomas Dandekar, Inhaber des Lehrstuhls für Bioinformatik am Biozentrum. Die Bioinformatiker sollen mit ihren Formeln, Algorithmen und PCs "das Signalnetzwerk der Thrombozyten-Aktivierung und -Hemmung" erstellen.

Sind alle Proteine und Signalwege identifiziert, erwarten die Wissenschaftler deutliche Fortschritte für die Medizin: "Wenn der Prozess bekannt ist, finden wir vielleicht diagnostische Marker, die Aussagen über mögliche Risiken zulassen", sagt Geiger. Während ein Schlaganfall oder ein Herzinfarkt heute in der Regel plötzlich und überraschend auftreten, könnte dann eine einfache Untersuchung des Blutes frühzeitig Auskunft darüber geben, ob eine bestimmte Person gefährdet ist.

Hoffnung auf eine bessere Therapie

Auch für die Therapie erwartet Geiger deutliche Verbesserungen: "Heute wissen wir, dass ein bestimmter Prozentsatz der Patienten nicht oder nur schlecht auf die gängigen Medikamente anspricht", sagt der Wissenschaftler. Eine exakte Erklärung dafür fehlt - genauso wie die Möglichkeit, vorherzusehen, in welche Gruppe ein bestimmter Patient fallen wird. Das könnte sich ändern mit dem Wissen, das der Forschungsverbund in den kommenden Jahren gewinnen will.

Weitere Beteiligte sind:

* Die Würzburger Firma vasopharm, ein von Professor Ulrich Walter 1998 mitgegründetes Unternehmen. Dort sollen neue Testverfahren entwickelt werden.

* Das Universitätsklinikum Mainz. Dort läuft die "Prevent-it - Gutenberg-Herz-Studie" mit 17.000 Teilnehmern.

* Das Universitätsklinikum Hamburg mit dem Teilprojekt "SH2 Domain Profiling"

* Die Universität Freiburg mit dem Teilprojekt "Modeling of signaling pathways"

* Die Universität Tübingen mit dem Teilprojekt "Computational proteomics"

Leiter des Forschungsverbunds Sara ist Albert Sickmann; sein Stellvertreter ist Ulrich Walter.

Kontakt: Dr. Jörg Geiger, T: (0931) 31 83 17 3; E-Mail: j.geiger@klin-biochem.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Spot auf die Maschinerie des Lebens
23.08.2017 | Max-Planck-Institut für die Physik des Lichts, Erlangen

nachricht Immunsystem kann durch gezielte Manipulation des Zellstoffwechsels reguliert werden
23.08.2017 | Medical University of Vienna

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie