Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Wachstum neuer Nervenzellen wird streng reguliert

08.08.2016

Die Entstehung neuer Nervenzellen im Gehirn wird äußerst strikt reguliert. In einer aktuellen Studie der Universität Bonn und des Deutschen Zentrums für Neurodegenerative Erkrankungen (DZNE) wurde nun ein Schlüsselmechanismus dieser Regulation identifiziert. Die Erkenntnisse eröffnen die Möglichkeit, die Gewinnung von Nervenzellen aus Stammzellen genau zu steuern. Auch für die Behandlung von Hirntumoren ergeben sich eventuell neue Perspektiven. Die Studie wird am 9. August in der Zeitschrift „Stem Cell Reports“ veröffentlicht.

Schon wenige Tage nach Befruchtung der Eizelle beginnt im werdenden Kind die Entwicklung des Gehirns. Bis zur Geburt bilden sich hier im Schnitt jede Minute rund 250.000 neue Nervenzellen. Wenn der Säugling das Licht der Welt erblickt, warten in seinem Kopf rund 100 Milliarden dieser Neuronen auf Input.


Das Mikroskopie-Bild zeigt humane neurale Stammzellen, bei der durch eine so genannte Immunfluoreszenzfärbung stammzelltypische Proteine farbig markiert wurden.

© AG Brüstle, Universität Bonn


Während der embryonalen Entwicklung müssen neuralen Stammzellen kontrolliert von der Zellvermehrung (Proliferation) in die Ausreifung (Differenzierung) übergehen.

© AG Brüstle, Universität Bonn

Diese enorme Menge an Nervenzellen stammt von einigen wenigen Vorläuferzellen ab, den neuralen Stammzellen. Diese müssen sich zunächst vermehren, um genügend Ausgangszellen zu bilden. Nach und nach schlägt dann ein Teil der Zellen einen anderen Weg ein und beginnt, in die gewebespezifischen Zellen des Gehirns (Neurone und Gliazellen) auszureifen.

Der Übergang zwischen Zellvermehrung und Ausreifung muss dabei genau austariert werden: Eine Veränderung des Gleichgewichtes hätte fatale Folgen und könnte zum Beispiel die Entstehung von Gehirntumoren auslösen. Um dies zu verhindern, wird das Schicksal der neuralen Stammzellen augenscheinlich äußerst strikt reguliert. Die Bonner Wissenschaftler haben nun einen dieser Regulationsmechanismen entschlüsselt.

Regelkreis für die Nervenproduktion

Für ihre Experimente nutzten sie neurale Stammzellen, aus denen sich menschliche Nervenzellen erzeugen lassen. „Wir konnten zeigen, dass an der Regulation dieser Zellen zwei verschiedene Komponenten beteiligt sind“, erklärt Dr. Laura Stappert vom Institut für Rekonstruktive Neurobiologie der Universität Bonn. Beide Komponenten kontrollieren sich quasi gegenseitig. Sie bilden so einen Regelkreis, der die Stammzell-Aktivität während der Gehirnentwicklung bis ins Feinste austariert.

Der eine Akteur in diesem Regelkreis ist der so genannte Notch-Signalweg. Er sorgt dafür, dass sich die Stammzellen munter vermehren. Gleichzeitig verhindert er, dass sich die Zellen spezialisieren, also in Neuronen oder Gliazellen umwandeln. Sie verbleiben in ihrem unreifen Zustand.

Gegenspieler des Notch-Weges ist ein Molekül mit dem kryptischen Namen miR-9/9*. Dieses unterbindet die Teilung der Stammzellen. Stattdessen sorgt es dafür, dass sie den Karrierepfad in Richtung Nervenzellen einschlagen. Zugleich hemmt miR-9/9* den Notch-Signalweg.

MiR-9/9* steht also für die Ausreifung und Differenzierung von Stammzellen, Notch für ihre Vermehrung. „Interessanterweise bewirkt Notch zusätzlich noch eine vermehrte Produktion von miR-9/9*“, erläutert Dr. Beate Roese-Koerner, die gemeinsam mit Stappert Erstautorin der Studie ist: „Notch erzeugt also seinen eigenen Hemmstoff.“

„Dieser Mechanismus verhindert augenscheinlich, dass sich die Stammzellen zu schnell teilen: Jedem Tritt aufs Gaspedal folgt direkt ein Tritt auf die Bremse“, ergänzt Professor Dr. Oliver Brüstle, Direktor des Instituts für Rekonstruktive Neurobiologie. Möglicherweise eignet sich miR-9/9* daher auch, um das Wachstum von Tumoren zu unterbinden. Die Forscher wollen diese These nun weiter untersuchen.

Die Bonner Wissenschaftler haben sich auf die Gewinnung von Nervenzellen aus Stammzellen spezialisiert. Sie setzen diese für den Zellersatz im Gehirn ein. Dazu müssen sie genau wissen, auf welche Weise der Ausreifungsprozess kontrolliert wird. Neu identifizierte Regulationsfaktoren wandern direkt in die Werkzeugkiste der Forscher, da sie noch mehr Kontrolle über die Zellen erlauben. Die neuen Erkenntnisse sind in diesem Zusammenhang von großer Relevanz.

Publikation: Roese-Koerner et al., Reciprocal Regulation between Bifunctional miR-9/9* and its Transcriptional Modulator Notch in Human Neural Stem Cell Self-Renewal and Differentiation, Stem Cell Reports (2016), http://dx.doi.org/10.1016/j.stemcr.2016.06.008

Kontakt:
Institut für Rekonstruktive Neurobiologie der Universität Bonn
Dr. Laura Stappert
Telefon: 0228/6885-533
E-Mail: laurastappert@uni-bonn.de

Prof. Dr. Oliver Brüstle
Telefon: 0228/6885-500
E-Mail: r.neuro@uni-bonn.de

Dr. Andreas Archut | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzen gegen Staunässe schützen
17.10.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Erweiterung des Lichtwegs macht winzige Strukturen in Körperzellen sichtbar
17.10.2017 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart MES 2017: die Fertigung der Zukunft

18.10.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

18.10.2017 | Medizin Gesundheit

Rittal Klima-Tipps: Ist ein Kühlgerät wirklich nötig?

18.10.2017 | Energie und Elektrotechnik

Smartphones im Kampf gegen die Blindheit

18.10.2017 | Medizintechnik