Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Tor zu Mitochondrien schließen

09.05.2017

Ein Forschungsteam entwickelt eine neue Methode, mit der sich importierte mitochondriale Proteine bestimmen lassen

Eukaryotische Zellen enthalten Tausende von Proteinen, die auf verschiedene zelluläre Kompartimente mit spezifischen Funktionen verteilt sind. Ein deutsch-schweizerisches Team um Prof. Dr. Bettina Warscheid von der Universität Freiburg und Prof. Dr. André Schneider von der Universität Bern hat die Methode „ImportOmics“ entwickelt.


Vergrößerung einer Elektrospray-Kapillare (links), die Proteine in die Öffnung eines Massenspektrometers überführt (rechts). Mithilfe dieser Technologie analysierten die Forschenden Mitochondrien mit einem für Proteine verschlossenen „Tor“ (Cartoon) auf molekularer Ebene.

Quelle: Christian D. Peikert

Damit können die Forschenden die Lokalisation von Proteinen bestimmen, die durch „Pforten“ in bestimmte, von Membranen umschlossene Zellkompartimente, die so genannten Organellen, importiert werden. Das Wissen über die genaue Lokalisation der einzelnen Proteine, über den Weg, den sie zurücklegen, um ihr Ziel zu erreichen und über die Zusammensetzung der Zellkompartimente spielt eine bedeutende Rolle beim Verständnis grundlegender Mechanismen der Zellbiologie.

Dies ist die Voraussetzung, um Krankheitsmechanismen zu verstehen, die auf fehlerhaften Funktionen in der Zelle beruhen. Die Forschenden präsentieren ihre Arbeit in der aktuellen Ausgabe der Fachzeitschrift „Nature Communications“.

Das Forschungsteam entwickelte die Methode, um das mitochondriale Proteininventar des einzelligen Parasiten Trypanosoma brucei zu bestimmen. Der Parasit besitzt ein einziges Mitochondrium, das essentiell ist für Wachstum und Überleben. Das Mitochondrium ist von zwei Membranen umgeben und beinhaltet mehr als tausend Proteine. Die genaue Proteinzusammensetzung ist jedoch noch nicht geklärt.

Die Mehrzahl dieser Proteine wird in der zellulären Flüssigkeit, dem Zytosol, synthetisiert und muss anschließend die äußere Membran der Mitochondrien passieren, um den endgültigen Bestimmungsort zu erreichen. Dazu verfügt die Außenmembran über ein zentrales „Tor“, die so genannte archaische Translokase der mitochondrialen Außenmembran (ATOM).

Die Wissenschaftlerinnen und Wissenschaftler machten sich dieses Tor zunutze, um die Gesamtheit der aus dem Zytosol importierten mitochondrialen Proteine zu definieren. Sie konstruierten Zellen, die reduzierte Mengen von ATOM40, der porenbildenden Komponente des ATOM-Komplexes, bilden. Dadurch wurde der Proteinimport in das Mitochondrium blockiert.

Das Forschungsteam setzte die quantitative Massenspektrometrie ein, um zu vergleichen, wie hoch die Proteinmengen in Mitochondrien mit defektem und mit ungestörtem Proteinimport sind. Auf diese Art identifizierten die Forschenden 1.120 mitochondriale Proteine, darunter mehr als 300 Proteine, die bislang nicht mit dem Mitochondrium des Parasiten in Verbindung gebracht wurden.

Außerdem zeigten sie, dass ImportOmics geeignet ist, um systematisch unterschiedliche Proteinimportsysteme zu analysieren. Dies wird beispielhaft für den Import von Proteinen in die äußere mitochondriale Membran und in den mitochondrialen Intermembranraum gezeigt. Darüber hinaus können Forschende mit der Methode untersuchen, wie andere Organellen des Parasiten sowie auch anderer Organismen zusammengesetzt sind.

Bettina Warscheid ist Leiterin der Abteilung Biochemie und Funktionelle Proteomforschung am Institut für Biologie II und Mitglied des Exzellenzclusters BIOSS Zentrum für biologische Signalstudien an der Universität Freiburg.

Bildunterschrift:
Vergrößerung einer Elektrospray-Kapillare (links), die Proteine in die Öffnung eines Massenspektrometers überführt (rechts). Mithilfe dieser Technologie analysierten die Forschenden Mitochondrien mit einem für Proteine verschlossenen „Tor“ (Cartoon) auf molekularer Ebene.
Quelle: Christian D. Peikert

Originalpublikation:
Christian D. Peikert, Jan Mani, Marcel Morgenstern, Sandro Käser, Bettina Knapp, Christoph Wenger, Anke Harsman, Silke Oeljeklaus, André Schneider* and Bettina Warscheid* (2017): Charting Organellar Importomes by Quantitative Mass Spectrometry. Nature Communications. DOI: 10.1038/NCOMMS15272 (*Diese Autoren sind zu gleichen Teilen beteiligt.)

Kontakt:
Prof. Dr. Bettina Warscheid
Albert-Ludwigs-Universität Freiburg
Institut für Biologie II
Tel.: 0761/203-2690
E-Mail: bettina.warscheid@biologie.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2017/das-tor-zu-mitochondrien-schliessen

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik