Ein Forschungsteam entwickelt eine neue Methode, mit der sich importierte mitochondriale Proteine bestimmen lassen
Eukaryotische Zellen enthalten Tausende von Proteinen, die auf verschiedene zelluläre Kompartimente mit spezifischen Funktionen verteilt sind. Ein deutsch-schweizerisches Team um Prof. Dr. Bettina Warscheid von der Universität Freiburg und Prof. Dr. André Schneider von der Universität Bern hat die Methode „ImportOmics“ entwickelt.
Vergrößerung einer Elektrospray-Kapillare (links), die Proteine in die Öffnung eines Massenspektrometers überführt (rechts). Mithilfe dieser Technologie analysierten die Forschenden Mitochondrien mit einem für Proteine verschlossenen „Tor“ (Cartoon) auf molekularer Ebene.
Quelle: Christian D. Peikert
Damit können die Forschenden die Lokalisation von Proteinen bestimmen, die durch „Pforten“ in bestimmte, von Membranen umschlossene Zellkompartimente, die so genannten Organellen, importiert werden. Das Wissen über die genaue Lokalisation der einzelnen Proteine, über den Weg, den sie zurücklegen, um ihr Ziel zu erreichen und über die Zusammensetzung der Zellkompartimente spielt eine bedeutende Rolle beim Verständnis grundlegender Mechanismen der Zellbiologie.
Dies ist die Voraussetzung, um Krankheitsmechanismen zu verstehen, die auf fehlerhaften Funktionen in der Zelle beruhen. Die Forschenden präsentieren ihre Arbeit in der aktuellen Ausgabe der Fachzeitschrift „Nature Communications“.
Das Forschungsteam entwickelte die Methode, um das mitochondriale Proteininventar des einzelligen Parasiten Trypanosoma brucei zu bestimmen. Der Parasit besitzt ein einziges Mitochondrium, das essentiell ist für Wachstum und Überleben. Das Mitochondrium ist von zwei Membranen umgeben und beinhaltet mehr als tausend Proteine. Die genaue Proteinzusammensetzung ist jedoch noch nicht geklärt.
Die Mehrzahl dieser Proteine wird in der zellulären Flüssigkeit, dem Zytosol, synthetisiert und muss anschließend die äußere Membran der Mitochondrien passieren, um den endgültigen Bestimmungsort zu erreichen. Dazu verfügt die Außenmembran über ein zentrales „Tor“, die so genannte archaische Translokase der mitochondrialen Außenmembran (ATOM).
Die Wissenschaftlerinnen und Wissenschaftler machten sich dieses Tor zunutze, um die Gesamtheit der aus dem Zytosol importierten mitochondrialen Proteine zu definieren. Sie konstruierten Zellen, die reduzierte Mengen von ATOM40, der porenbildenden Komponente des ATOM-Komplexes, bilden. Dadurch wurde der Proteinimport in das Mitochondrium blockiert.
Das Forschungsteam setzte die quantitative Massenspektrometrie ein, um zu vergleichen, wie hoch die Proteinmengen in Mitochondrien mit defektem und mit ungestörtem Proteinimport sind. Auf diese Art identifizierten die Forschenden 1.120 mitochondriale Proteine, darunter mehr als 300 Proteine, die bislang nicht mit dem Mitochondrium des Parasiten in Verbindung gebracht wurden.
Außerdem zeigten sie, dass ImportOmics geeignet ist, um systematisch unterschiedliche Proteinimportsysteme zu analysieren. Dies wird beispielhaft für den Import von Proteinen in die äußere mitochondriale Membran und in den mitochondrialen Intermembranraum gezeigt. Darüber hinaus können Forschende mit der Methode untersuchen, wie andere Organellen des Parasiten sowie auch anderer Organismen zusammengesetzt sind.
Bettina Warscheid ist Leiterin der Abteilung Biochemie und Funktionelle Proteomforschung am Institut für Biologie II und Mitglied des Exzellenzclusters BIOSS Zentrum für biologische Signalstudien an der Universität Freiburg.
Bildunterschrift:
Vergrößerung einer Elektrospray-Kapillare (links), die Proteine in die Öffnung eines Massenspektrometers überführt (rechts). Mithilfe dieser Technologie analysierten die Forschenden Mitochondrien mit einem für Proteine verschlossenen „Tor“ (Cartoon) auf molekularer Ebene.
Quelle: Christian D. Peikert
Originalpublikation:
Christian D. Peikert, Jan Mani, Marcel Morgenstern, Sandro Käser, Bettina Knapp, Christoph Wenger, Anke Harsman, Silke Oeljeklaus, André Schneider* and Bettina Warscheid* (2017): Charting Organellar Importomes by Quantitative Mass Spectrometry. Nature Communications. DOI: 10.1038/NCOMMS15272 (*Diese Autoren sind zu gleichen Teilen beteiligt.)
Kontakt:
Prof. Dr. Bettina Warscheid
Albert-Ludwigs-Universität Freiburg
Institut für Biologie II
Tel.: 0761/203-2690
E-Mail: bettina.warscheid@biologie.uni-freiburg.de
https://www.pr.uni-freiburg.de/pm/2017/das-tor-zu-mitochondrien-schliessen
Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau
Weitere Berichte zu: > Albert-Ludwigs-Universität > Außenmembran > Biologie > Mitochondrien > Mitochondrium > Organellen > Parasiten > Proteine > Proteinimport > Trypanosoma brucei > Zytosol
Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main
Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie
Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können
Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...
Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.
Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...
University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.
Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.
Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.
Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...
Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...
Anzeige
Anzeige
Internationale Konferenz zur Digitalisierung
19.04.2018 | Veranstaltungen
124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus
19.04.2018 | Veranstaltungen
DFG unterstützt Kongresse und Tagungen - Juni 2018
17.04.2018 | Veranstaltungen
Grösster Elektrolaster der Welt nimmt Arbeit auf
20.04.2018 | Interdisziplinäre Forschung
Bilder magnetischer Strukturen auf der Nano-Skala
20.04.2018 | Physik Astronomie
Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas
20.04.2018 | Geowissenschaften