Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das soziale Netzwerk im Gehirn: Nervenzellen kommunizieren wie Freunde bei Facebook

05.02.2015

Neurone im Gehirn sind wie ein soziales Netzwerk miteinander verbunden. Das berichten Forschende vom Biozentrum der Universität Basel. Jede Nervenzelle sei mit einer Vielzahl anderer Nervenzellen verbunden, doch die stärksten Bindungen bestünden zwischen den wenigen Zellen, die sich besonders ähneln. Die Ergebnisse der Studie sind in der Fachzeitschrift «Nature» veröffentlicht.

Nervenzellen bilden ein komplexes Geflecht aus Verbindungen, den Synapsen, von denen es bis zu mehrere tausend pro Zelle gibt. Doch nicht alle dieser synaptischen Verbindungen sind gleich: Die grosse Mehrheit ist schwach, nur sehr wenige sind stark.


Ein neuronales Netzwerk funktioniert wie ein soziales Netzwerk: Die stärksten Bindungen sind zwischen gleichgesinnten Partnern.

„Wir wollten herausfinden, ob es Regeln dafür gibt, wie sich Nervenzellen zu komplexen Netzwerken mit Millionen anderer Nervenzellen verbinden", so Professor Thomas Mrsic-Flogel, Leiter des Forschungsteams am Biozentrum, Universität Basel und dem UCL (University College London). „Es hat sich herausgestellt, dass eine dieser Regeln sehr einfach ist: Gleichgesinnte Neuronen sind stark miteinander gekoppelt, während Neuronen, die sich unterschiedlich verhalten, nur schwache oder gar keine Verbindungen haben."

Starke Verbindungen zwischen engen Freunden

Die Forscher konzentrierten sich bei ihrer Studie auf ein bestimmtes Gebiet der Hirnrinde, das Informationen aus dem Auge empfängt und zur visuellen Wahrnehmung führt. Neuronen in diesem Teil des Gehirns reagieren auf spezielle visuelle Muster, jedoch ist es schwierig zu entschlüsseln, welche Zellen miteinander verbunden sind, da sie zu vielen Tausenden dicht beieinander liegen (knapp 100.000 pro Kubikmillimeter).

Mit einer Kombination aus hochauflösenden Bildgebungsverfahren und empfindlichen elektrischen Messungen fanden die Forscher heraus, dass die Verbindungen zwischen benachbarten Neuronen wie ein soziales Netzwerk organisiert sind. In sozialen Netzwerken wie Facebook stehen wir mit einer großen Anzahl von Bekannten in Kontakt. Der Kreis enger Freunde jedoch ist um ein Vielfaches kleiner. Dies sind in der Regel gerade die Freunde, mit denen wir die meisten Gemeinsamkeiten haben und deren Meinung uns wichtiger ist als die aller anderen.

„Die schwachen Kontakte im Gehirn haben kaum Bedeutung, obwohl sie in der Mehrheit sind", erklärt Mrsic-Flogel. „Die wenigen starken Verbindungen zwischen Neuronen mit ähnlicher Funktion hingegen haben den stärksten Einfluss auf die Aktivität ihrer Partner. Dieses Zusammenspiel könnte ihnen helfen, bestimmte Informationen der Aussenwelt zu verstärken. "

Schwache Verbindungen könnten für Lernprozesse wichtig sein

Aber warum existieren so viele dieser schwachen Verbindungen zwischen Nervenzellen? „Wir nehmen an, dass dies mit Lernprozessen zu tun haben könnte", sagt Dr. Lee Cossell, einer der Erstautoren der Studie. „Wenn Neuronen ihr Verhalten ändern müssen, stehen schwache Verbindungen bereits zur Verfügung, um zu starken Verbindungen ausgebaut werden zu können. Möglicherweise wird so schnelle Plastizität im Gehirns gewährleistet." Folglich kann sich das Gehirn schneller an Veränderungen in der Umwelt anpassen.

Die Studie reiht sich in das weltweite Bemühen vieler Wissenschaftler ein, durch das Kartieren des neuronalen Schaltplans besser zu verstehen, wie das Gehirn Wahrnehmungen, Gedanken und Handlungen hervorbringt. „Die Ergebnisse zeigen, wie Neuronen im Netzwerk miteinander interagieren, um Informationen zu verarbeiten. Dieses Wissen ebnet den Weg, um genaue Computersimulationen des Gehirns zu erstellen", sagt Mrsic-Flogel. Darüber hinaus ist die Erforschung der Verschaltungen von Nervenzellen auch für das Verständnis neurologischer Krankheiten bedeutend. „Wenn wir wissen, wie das Muster der Verbindungen im gesunden Gehirn aussehen sollte, dann können wir auch anfangen herauszufinden, was beispielsweise bei Schizophrenie oder Autismus falsch läuft", so Mrsic-Flogel.

Originalartikel
Lee Cossell, Maria Florencia Iacaruso, Dylan R. Muir, Rachael Houlton, Elie N. Sader, Ho Ko, Sonja B. Hofer, Thomas D. Mrsic-Flogel: Functional organization of excitatory synaptic strength in primary visual cortex. Nature, published online 4 February 2015.

Weitere Auskünfte
Thomas D. Mrsic-Flogel, Departement Biozentrum, Universität Basel, Tel.+41 61 267 17 66, E-Mail: thomas.mrsic-flogel@unibas.ch

Heike Sacher | Universität Basel
Weitere Informationen:
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie