Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Sehen beginnt mit einem molekularen Breakdance

17.11.2015

Unser Sehsinn beruht auf exakt choreographierten, ultraschnellen Molekülbewegungen.

Die Aufnahme von Licht durch Pigmente in der Netzhaut, die man Rhodopsin oder auch Sehpurpur nennt, ist die Grundlage unseres Sehsinns. Neue Experimente von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie und der University of Toronto haben gezeigt, dass der erste photochemische Schritt dieses Prozesses an der fundamentalen molekularen Geschwindigkeitsgrenze abläuft. Die Ergebnisse wurden heute online in der Fachzeitschrift Nature Chemistry vorgestellt.


Künstlerische Darstellung der Molekülbewegung in der Netzhaut.

J.M. Harms, MPSD

Der Chromophor im Rhodopsin, Retinal oder auch Vitamin-A-Aldehyd genannt, leitet seine Lichtempfindlichkeit aus einer sich wiederholenden Kette von einzeln und doppelt gebundenen Kohlenstoffatomen ab.

Die Absorption eines Photons durch Retinal führt zu einer extrem kurzzeitigen Schwächung einer bestimmten Doppelbindung, wodurch eine Rotation um diese Bindung ausgelöst wird. Wie schnell diese sogenannte Isomerisierungsreaktion tatsächlich erfolgt, konnte lange Zeit nicht genau beobachtet werden und war im Wesentlichen von den technologischen Fortschritten im Bereich gepulster Laserquellen abhängig.

Mit Femtosekunden-Lasern konnte bereits vor einiger Zeit gezeigt werden, dass die Isomerisierung innerhalb von maximal 200 Femtosekunden abläuft (das sind 200 Millionstel einer Milliardstel Sekunde) und, dass es sich dabei um eine vibrationskohärente chemische Reaktion handeln könnte. Das bedeutet, dass die Schwingungsbewegungen des Chromophors Retinal selbst bei der Steuerung der Isomerisierung mitwirken.

Mithilfe einer hochempfindlichen Methode aus der Ultrakurzzeitspektroskopie, die man heterodyne-detected transient grating spectroscopy nennt, haben Wissenschaftler in den Laboren von Professor R. J. Dwayne Miller (Max-Planck-Institut für Struktur und Dynamik der Materie und University of Toronto) und Professor Oliver P. Ernst (University of Toronto) die Isomerisierungsreaktion von Rinder-Rhodopsin mit beispielloser Empfindlichkeit und vorher unerreichter zeitlicher Auflösung erneut untersucht.

Diese neuen Messungen zeigten, dass die Isomerisierung auf einer Zeitskala von 30 Femtosekunden erfolgt. „Es stellt sich heraus, dass der erste Schritt des Sehens beinahe zehnmal schneller ist als bisher angenommen,“ sagt Professor Miller, „und die molekularen Bewegungen sind durch Rhodopsin perfekt choreographiert“.

Die Analyse der zeitaufgelösten experimentellen Daten enthüllt diese choreographierte Schwingungsdynamik, die sich aus örtlich begrenzten Streck-, Wipp- und Drehbewegungen zusammensetzt. „Eine solch schnelle Zeitskala stellt eine eindeutige Eingrenzung der vibrationskohärenten Reaktionskoordinate dar,“ sagt Dr. Philip Johnson, Erstautor der Studie.

„Und diese Arbeit lässt darauf schließen, dass die Reaktion lokal an der bestimmten isomerisierenden Doppelbindung angesiedelt ist.“ „Darüber hinaus findet die Isomerisierungsreaktion innerhalb einer einzelnen Periode der relevanten Drehschwingung statt,“ fügt er hinzu. „Der Begriff der vibrationskohärenten chemischen Reaktionen wird mindestens seit den 1930er Jahren verwendet, aber erst jetzt wurden sie eindeutig nachgewiesen.“

Diese Forschungsarbeit wurde von der Max-Planck-Gesellschaft, vom Natural Sciences and Engineering Research Council of Canada (NSERC), vom Programm Canada Excellence Research Chairs (CERC) und vom Canadian Institute for Advanced Research (CIFAR) unterstützt. Professor Miller und Professor Ernst sind Co-Direktoren des CIFAR-Programms Molekulare Architektur des Lebens, das die Details der komplexen molekularen Prozesse entschlüsselt, die allen lebenden Organismen zu Grunde liegen.

Contact person:
Prof. Dr. R. J. Dwayne Miller
Max-Planck-Institut für Struktur und Dynamik der Materie
Center for Free-Electron Laser Science
Luruper Chaussee 149
22761 Hamburg
Germany
+49 (0)40 8998-6200
dwayne.miller@mpsd.mpg.de

Original publication:
Philip J. M. Johnson, Alexei Halpin, Takefumi Morizumi, Valentyn I. Prokhorenko, Oliver P. Ernst, and R. J. Dwayne Miller, “Local vibrational coherences drive the primary photochemistry of vision,” Nature Chemistry 7, 980–986 (2015), DOI: 10.1038/nchem.2398

Weitere Informationen:

http://dx.doi.org/10.1038/nchem.2398 Originalpublikation
http://www.mpsd.mpg.de/forschung/ard Forschungsgruppe von Prof. Dr. R. J. Dwayne Miller
http://www.mpsd.mpg.de Max-Planck-Institut für Struktur und Dynamik der Materie

Dr. Michael Grefe | Max-Planck-Institut für Struktur und Dynamik der Materie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

nachricht Nervenkrankheit ALS: Mehr als nur ein Motor-Problem im Gehirn?
16.01.2017 | Leibniz-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltweit erste Solarstraße in Frankreich eingeweiht

16.01.2017 | Energie und Elektrotechnik

Proteinforschung: Der Computer als Mikroskop

16.01.2017 | Biowissenschaften Chemie

Vermeintlich junger Stern entpuppt sich als galaktischer Greis

16.01.2017 | Physik Astronomie