Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Sehen beginnt mit einem molekularen Breakdance

17.11.2015

Unser Sehsinn beruht auf exakt choreographierten, ultraschnellen Molekülbewegungen.

Die Aufnahme von Licht durch Pigmente in der Netzhaut, die man Rhodopsin oder auch Sehpurpur nennt, ist die Grundlage unseres Sehsinns. Neue Experimente von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie und der University of Toronto haben gezeigt, dass der erste photochemische Schritt dieses Prozesses an der fundamentalen molekularen Geschwindigkeitsgrenze abläuft. Die Ergebnisse wurden heute online in der Fachzeitschrift Nature Chemistry vorgestellt.


Künstlerische Darstellung der Molekülbewegung in der Netzhaut.

J.M. Harms, MPSD

Der Chromophor im Rhodopsin, Retinal oder auch Vitamin-A-Aldehyd genannt, leitet seine Lichtempfindlichkeit aus einer sich wiederholenden Kette von einzeln und doppelt gebundenen Kohlenstoffatomen ab.

Die Absorption eines Photons durch Retinal führt zu einer extrem kurzzeitigen Schwächung einer bestimmten Doppelbindung, wodurch eine Rotation um diese Bindung ausgelöst wird. Wie schnell diese sogenannte Isomerisierungsreaktion tatsächlich erfolgt, konnte lange Zeit nicht genau beobachtet werden und war im Wesentlichen von den technologischen Fortschritten im Bereich gepulster Laserquellen abhängig.

Mit Femtosekunden-Lasern konnte bereits vor einiger Zeit gezeigt werden, dass die Isomerisierung innerhalb von maximal 200 Femtosekunden abläuft (das sind 200 Millionstel einer Milliardstel Sekunde) und, dass es sich dabei um eine vibrationskohärente chemische Reaktion handeln könnte. Das bedeutet, dass die Schwingungsbewegungen des Chromophors Retinal selbst bei der Steuerung der Isomerisierung mitwirken.

Mithilfe einer hochempfindlichen Methode aus der Ultrakurzzeitspektroskopie, die man heterodyne-detected transient grating spectroscopy nennt, haben Wissenschaftler in den Laboren von Professor R. J. Dwayne Miller (Max-Planck-Institut für Struktur und Dynamik der Materie und University of Toronto) und Professor Oliver P. Ernst (University of Toronto) die Isomerisierungsreaktion von Rinder-Rhodopsin mit beispielloser Empfindlichkeit und vorher unerreichter zeitlicher Auflösung erneut untersucht.

Diese neuen Messungen zeigten, dass die Isomerisierung auf einer Zeitskala von 30 Femtosekunden erfolgt. „Es stellt sich heraus, dass der erste Schritt des Sehens beinahe zehnmal schneller ist als bisher angenommen,“ sagt Professor Miller, „und die molekularen Bewegungen sind durch Rhodopsin perfekt choreographiert“.

Die Analyse der zeitaufgelösten experimentellen Daten enthüllt diese choreographierte Schwingungsdynamik, die sich aus örtlich begrenzten Streck-, Wipp- und Drehbewegungen zusammensetzt. „Eine solch schnelle Zeitskala stellt eine eindeutige Eingrenzung der vibrationskohärenten Reaktionskoordinate dar,“ sagt Dr. Philip Johnson, Erstautor der Studie.

„Und diese Arbeit lässt darauf schließen, dass die Reaktion lokal an der bestimmten isomerisierenden Doppelbindung angesiedelt ist.“ „Darüber hinaus findet die Isomerisierungsreaktion innerhalb einer einzelnen Periode der relevanten Drehschwingung statt,“ fügt er hinzu. „Der Begriff der vibrationskohärenten chemischen Reaktionen wird mindestens seit den 1930er Jahren verwendet, aber erst jetzt wurden sie eindeutig nachgewiesen.“

Diese Forschungsarbeit wurde von der Max-Planck-Gesellschaft, vom Natural Sciences and Engineering Research Council of Canada (NSERC), vom Programm Canada Excellence Research Chairs (CERC) und vom Canadian Institute for Advanced Research (CIFAR) unterstützt. Professor Miller und Professor Ernst sind Co-Direktoren des CIFAR-Programms Molekulare Architektur des Lebens, das die Details der komplexen molekularen Prozesse entschlüsselt, die allen lebenden Organismen zu Grunde liegen.

Contact person:
Prof. Dr. R. J. Dwayne Miller
Max-Planck-Institut für Struktur und Dynamik der Materie
Center for Free-Electron Laser Science
Luruper Chaussee 149
22761 Hamburg
Germany
+49 (0)40 8998-6200
dwayne.miller@mpsd.mpg.de

Original publication:
Philip J. M. Johnson, Alexei Halpin, Takefumi Morizumi, Valentyn I. Prokhorenko, Oliver P. Ernst, and R. J. Dwayne Miller, “Local vibrational coherences drive the primary photochemistry of vision,” Nature Chemistry 7, 980–986 (2015), DOI: 10.1038/nchem.2398

Weitere Informationen:

http://dx.doi.org/10.1038/nchem.2398 Originalpublikation
http://www.mpsd.mpg.de/forschung/ard Forschungsgruppe von Prof. Dr. R. J. Dwayne Miller
http://www.mpsd.mpg.de Max-Planck-Institut für Struktur und Dynamik der Materie

Dr. Michael Grefe | Max-Planck-Institut für Struktur und Dynamik der Materie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie