Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das menschliche Hirn wächst länger und funktionsspezifischer als gedacht

18.01.2017

Wie wirken sich Entwicklungen in der Kindheit auf das Nervengewebe im Gehirn aus? Anders als bisher angenommen, wächst in bestimmten Bereichen des Gehirns das Gewebe bis ins Erwachsenenalter. Das zeigte eine in der Fachzeitschrift Science veröffentlichte Studie.

"Es besteht ein enger Zusammenhang zwischen der Gewebestruktur und unserer Fähigkeit, Gesichter zu erkennen", erklärt Prof. Katrin Amunts, Direktorin des Jülicher Instituts für Neurowissenschaften und Medizin. Ein deutsch-amerikanisches Forscherteam aus Jülich, Aachen, Düsseldorf, Jerusalem und Stanford analysierte dazu die Gehirne von Kindern und Erwachsenen in einem Magnetresonanztomografen und im Mikroskop.


Karten aus dem JuBrain-Atlas für zwei Regionen des Gysus Fusiformus

Der Gyrus Fusiformis, dargestellt von der Unterseite des Gehirns. Die dunklen Bereiche zeigen Furchen, die hellen Bereiche entsprechen Windungen. Die beiden Areale für das Erkennen von Gesichtern und Orten sind durch Wahrscheinlichkeits-Karten repräsentiert: Sie zeigen an, wie wahrscheinlich es ist, dass dieses Areal an einer bestimmten Stelle gefunden wird (höchste Wahrscheinlichkeit in Rot). Die Befunde basieren auf Kartierungen an Gewebeschnitten, die das Forschungszentrum Jülich auch der Öffentlichkeit über den JuBrain-Atlas zur Verfügung stellt. Die Funktion - also ob ein Areal in Orts- oder Gesichtserkennung eingebunden ist - wurde durch die Überlagerung der Karten mit den Ergebnissen funktionell bildgebender Untersuchungen (funktionelle MRT) festgestellt. Die anschließende Analyse der Feinstruktur der Hirnschnitte ermöglichte den Rückschluss auf das Wachstum der Dendriten.

Copyright: Forschungszentrum Jülich

Schon im Mutterleib nimmt das menschliche Gehirn Informationen auf und verarbeitet sie. Kommt ein Baby zur Welt, kann es sehen, hören und auf Berührungen reagieren. Allerdings sind all diese Funktionen noch nicht ausgereift. Bedingt durch Wahrnehmung und Erfahrung nimmt die Zahl der Verknüpfungen zwischen den Nervenzellen in den ersten drei Lebensjahren rasant zu.

Mit zwei Jahren entspricht die Menge der Synapsen derjenigen von Erwachsenen; ein Dreijähriger hat mit einer Anzahl von 200 Billionen bereits doppelt so viele. Bis zum Jugendalter wird dann rund die Hälfte davon wieder abgebaut, bis die für Erwachsene typische Menge von 100 Billionen erreicht wird. Man nahm bisher an, dass ein großer Teil der Gehirnentwicklung und plastischen Anpassung an Lebensbedingungen bei Kindern im Abbau der für ihre Lebenswelt nicht relevanten Synapsen besteht, dem sogenannten "Pruning" oder der "Ausdünnung".

Die Wissenschaftler untersuchten über mehrere Monate die funktionelle Organisation und mikroskopische Struktur von Gehirnen von Kindern und jungen Erwachsenen. Die Kinder in der Studie waren zwischen fünf und zwölf Jahre alt, die Erwachsenen zwischen 22 und 28 – ein Alter, in dem bisher die strukturelle und funktionelle Entwicklung des sogenannten Schläfenlappens, einem Teil des Großhirns, als abgeschlossen angesehen wurde.

Sie konzentrierten sich dabei auf eine bestimmte Hirnregion, den sogenannten Gyrus fusiformis, der unter anderem wichtige Strukturen für kognitive Leistungen wie Gesichts- und Worterkennung, aber auch für die Erkennung bestimmter räumlicher Aspekte sowie für Symbole (z.B. Buchstaben) enthält.

Alle Versuchsteilnehmer betrachteten eine Reihe von Bildern: Gesichter, Körper, Orte, Objekte und Symbole. Mithilfe von funktioneller Magnetresonanztomografie identifizierten die Forscher dabei die Bereiche des Gehirns mit der größten spezifischen Aktivität für diese Stimuli. So lokalisierten sie zwei benachbarte Hirnregionen: Mit der einen erkennt der Mensch Orte, mit der anderen Gesichter.

Erst Erwachsene können sich Gesichter gut merken

Ein Vergleich der Daten zeigte zusätzliches Gewebe bei den Erwachsenen – jedoch nur in einer der beiden Hirnregionen, der für die Gesichtserkennung. Die Forscher vermuten, dass besonders das Wachstum der sogenannten Dendriten – Zellfortsätze der Nervenzellen, welche vorwiegend der Reizaufnahme dienen – für das zusätzliche Gewebe sorgt. "Dendriten sammeln Informationen aus unterschiedlichen Hirnregionen und bringen sie zu den einzelnen Nervenzellen", erklärt Karl Zilles, JARA Senior-Professor am Jülicher Institut für Neurowissenschaften und Medizin und an der Klinik für Psychiatrie der RWTH Aachen. "Wir denken, dass sich die Dendriten und somit auch Synapsen sowie das Myelin um die dort vorhandenen Axone der Nervenzellen stark in der Region für Gesichtserkennung entwickeln."

Die Fähigkeit, Gesichter zu erkennen, ist bei Kindern noch nicht voll ausgeprägt. Sie wird im Laufe des Erwachsenwerdens entwickelt. Auch diese Annahme überprüften die Wissenschaftler. Sie unterzogen die Kinder und Erwachsenen zwei verschiedenen Tests, um festzustellen, wie gut sie Gesichter und Orte wiedererkennen konnten. Für die Gesichtserkennung benutzten sie eine Variante des sogenannten Cambridge Face Memory Tests. Dieser prüft die Fähigkeit, einmal gesehene Gesichter wiederzuerkennen, unter zunehmend schwierigeren Bedingungen – etwa die Paarung mit ähnlichen Gesichtern, anderen Lichtverhältnissen oder überlagerten Bildstörungen. Während die Originalform des Cambridge-Tests mit Gesichtern von erwachsenen Männern arbeitet, wurden hier Bilder von Kindergesichtern verwendet – denn für die jungen Testteilnehmer ist es schwieriger, Gesichter von Erwachsenen auseinanderzuhalten. Für die Ortserkennung wurde ein ähnlicher Test benutzt, in dem Häuser und Korridore wiederzuerkennen waren.

Kinder schnitten bei beiden Tests ähnlich ab. Anders war es bei den Erwachsenen. "Sie konnten sich einmal eingeprägte Gesichter wesentlich besser merken als Orte", erklärt Katrin Amunts. "Das unterstützt die Hypothese, dass Gesichtserkennung eine Fähigkeit ist, die sich noch im Jugendalter weiterentwickelt." Diese Entwicklung hängt eng zusammen mit dem Wachstum von Dendriten, Synapsen und Myelin in der entsprechenden Region im Schläfenlappen. "Im Hirnareal für Gesichtserkennung war das Gewebewachstum nachzuweisen, nicht jedoch im Gebiet für Ortserkennung. Dies stimmt mit den funktionellen Befunden perfekt überein", stellt Karl Zilles fest.

Ähnliche Wachstumsprozesse seien auch in anderen Bereichen zu vermuten, so Amunts – etwa im Sprachzentrum. "Schließlich entwickeln sich die sprachlichen Fähigkeiten über einen relativ großen Zeitraum." Die vorliegende Publikation zeigt somit erstmals ein regional- und funktionsspezifisches Wachstum bestimmter, aber nicht aller Hirnregionen im Zeitraum zwischen Kindes- und Erwachsenenalter.

Originalpublikation:

"Microstructural proliferation in human cortex is coupled with the development of face processing" Jesse Gomez, Michael A. Barnett, Vaidehi Natu, Aviv Mezer, Nicola Palomero-Gallagher, Kevin S. Weiner, Katrin Amunts, Karl Zilles, Kalanit Grill-Spector, Science 06 Jan 2017, Vol. 355, Issue 6320, pp. 68-71, DOI: 10.1126/science.aag0311, http://science.sciencemag.org/content/355/6320/68

Weitere Informationen:

Institut für Neurowissenschaften und Medizin
Bereich Strukturelle und funktionelle Organisation des Gehirns (INM-1):
http://www.fz-juelich.de/inm/inm-1/DE/Home/home_node.html

JuBrain: Juelich Brain Model (englisch):

http://www.fz-juelich.de/JuBrain/EN/_node.html

Youtube-Video der Stanford University (englisch):

https://www.youtube.com/watch?v=YmGpgS4c6IM

Ansprechpartner:

Prof. Katrin Amunts
Institut für Neurowissenschaften und Medizin
Bereich Strukturelle und funktionelle Organisation des Gehirns (INM-1)
Tel.: 02461 61-4300
Email: k.amunts@fz-juelich.de

Prof. Karl Zilles
Institut für Neurowissenschaften und Medizin
Strukturelle und funktionelle Organisation des Gehirns
Tel.: 02461 61-3015
Email: k.zilles@fz-juelich.de

Pressekontakt:

Dr. Regine Panknin
Unternehmenskommunikation
Tel.: 02461 61-9054
Email: r.panknin@fz-juelich.de

Dr. Regine Panknin | Forschungszentrum Jülich GmbH
Weitere Informationen:
http://fz-juelich.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics