Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Innere einer Zelle aus Sicht eines sich bewegenden Proteins

11.08.2014

Heidelberger Forscher entwickeln neue Methoden zur Bewegungsmessung von Proteinen in der Zelle

Zahlreiche Hindernisse, die sich aus den zellulären Strukturen ergeben, bremsen die Bewegungen von Proteinen innerhalb einer Zelle. Wissenschaftlern der Universität Heidelberg und des Deutschen Krebsforschungszentrums (DKFZ) ist es gelungen, die Zelltopologie zu „kartieren“, indem sie Proteine in der lebenden Zelle über verschiedene Zeitspannen und Distanzen beobachtet haben.

Zum Einsatz kam dabei ein neues Verfahren, das auf Fluoreszenzmikroskopie basiert. Damit konnten die Wissenschaftler messen, wie lange Proteine brauchen, um im Zellinneren Strecken in einem Bereich von 0,2 bis 3 Mikrometern zurückzulegen. Aus der Analyse der Messdaten entwickelte das Team unter der Leitung von Dr. Karsten Rippe ein mathematisches Modell, mit dem sich intrazelluläre Strukturen rekonstruieren lassen. Die Forschungsergebnisse wurden in „Nature Communications“ veröffentlicht.

Zellstrukturen wie Membranen, das Zytoskelett und das DNA-Genom bilden ein dynamisches dreidimensionales Labyrinth innerhalb der Zelle. Darin müssen sich Proteine zurechtfinden, um den Ort zu erreichen, an dem sie aktiv werden sollen. Die räumliche Struktur des Zellinneren ist deshalb ein wichtiger Faktor für den Transport von Proteinen und das Funktionieren der Zelle.

„Zellstrukturen sind zwar in zahlreichen mikroskopischen Untersuchungen sichtbar gemacht worden. Bisher ist jedoch unklar, wie ein in der Zelle diffundierendes Protein dieses innere Netzwerk von Hindernissen ,erspürt‘“, sagt Dr. Rippe. Um dieser Frage nachzugehen, hat sein Team eine Methode entwickelt, mit der die räumliche Struktur in einer Zelle aus zufälligen Proteinbewegungen abgeleitet werden kann.

Zum Einsatz kamen dabei fluoreszierende Proteine, die mit Hilfe eines selbst entwickelten Fluoreszenzspektroskopie-Systems beobachtet wurden. Wie Karsten Rippe erläutert, stellen dicht gepackte DNA-Bereiche im Zellkern die größten Hindernisse dar.

„Die Bewegungen eines Proteins in der Zelle ähneln denen einer Kugel in dem Geschicklichkeitsspiel, bei dem eine Murmel durch ein Labyrinth ,bugsiert‘ werden muss“, sagt Michael Baum, der Erstautor der Studie ist und die Arbeit als Teil seiner Dissertation an der Universität Heidelberg durchgeführt hat. Die Murmeln können leicht über kurze Strecken bewegt werden, dann kollidieren sie jedoch mit einem Hindernis und werden auf ihrem weiteren Weg gebremst.

Das führt dazu, dass sie sich über längere Strecken mit einer verlangsamten Durchschnittsgeschwindigkeit per „stop and go“ fortbewegen. Bei der Analyse der Proteinbewegungen ordneten die Heidelberger Forscher der jeweiligen zurückgelegten Gesamtstrecke die dafür benötige Zeit zu.

Daraus ergibt sich der durchschnittliche Abstand zwischen den Hindernissen. Auf diesen Daten basiert ein mathematisches Modell, mit dem sich die gemessene Bewegung der Proteine in der Zelle beschreiben und die Zelltopologie rekonstruieren lässt – und zwar mit einer deutlich besseren Auflösung als es aktuell mit einer lichtmikroskopischen Abbildung möglich ist, wie Dr. Rippe betont.

„Die Struktur der Hindernisse, auf die ein Protein bei seiner Bewegung durch die Zelle trifft, ähnelt dem Modell eines löchrigen Mediums, wie es zum Beispiel auch in einem Schwamm zu finden ist“, sagt der Heidelberger Wissenschaftler.

In dieser dynamischen Struktur waren größere Proteine zuweilen mehrere Minuten lang gefangen. Ein weiteres Forschungsergebnis zeigt, dass sich Medikamente aus der Chemotherapie oder der Malaria-Behandlung ebenfalls auf die Mobilität der Proteine im Zellkern auswirken und die DNA-Hindernisse im Zellkern durchlässiger machen können.

Dr. Rippe und sein Team wollen ihren neuen Ansatz nun in weiteren Untersuchungen am BioQuant-Zentrum der Universität Heidelberg und am DKFZ anwenden. Im Mittelpunkt stehen dabei die Wechselbeziehungen zwischen medikamentenbedingten Änderungen der Zellstruktur und dem Proteintransport sowie der Fehlregulierung dieses Prozesses bei Krankheiten.

Die Forschungsarbeiten wurden vom Bundesministerium für Bildung und Forschung gefördert.

Weitere Informationen:
http://malone.bioquant.uni-heidelberg.de

Originalveröffentlichung:
M. Baum, F. Erdel, M. Wachsmuth & K. Rippe: Retrieving the intracellular topology from multi-scale protein mobility mapping in living cells. Nature Communications 5, 4494 (24 July 2014), doi: 10.1038/ncomms5494

Kontakt:
Dr. Karsten Rippe
BioQuant-Zentrum
Telefon (06221) 54-51376
Karsten.Rippe@bioquant.uni-heidelberg.de

Kommunikation und Marketing
Pressestelle
Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einblick ins geschlossene Enzym
26.06.2017 | Universität Konstanz

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie