Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Gedächtnis nimmt es nicht immer so genau

12.03.2014

Tübinger Wissenschaftler erforschen, wie sich das Erinnerungsvermögen für Bilddetails beeinflussen lässt

Erinnerung ist ein dynamischer und zuweilen geradezu kreativer Prozess: Was aus dem Gedächtnis abgerufen wird, kann sich deutlich von dem unterscheiden, was ursprünglich abgespeichert wurde.

Wissenschaftler der Universität Tübingen unter der Leitung von Professor Christian Plewnia von der Universitätsklinik für Psychiatrie und Psychotherapie haben zusammen mit Kollegen der Universität Bielefeld die Rolle eines bestimmten Bereichs der Großhirnrinde bei der Formung von Erinnerungen untersucht.

Dabei ließen sie freiwillige Probanden unter dem Einfluss schwacher, über den Schädel angelegter Stromreize in einem ausgeklügelten Test bekannte von erstmals präsentierten Bildern unterscheiden und maßen ihre Leistungsfähigkeit. Während sich die Rate der richtig als bereits bekannt eingeordneten Bilder kaum beeinflussen ließ, modulierte Strom mit unterschiedlicher Richtung (Polarität) die Rate der fälschlich als bekannt eingestuften Bilder deutlich.

Diese Ergebnisse geben den Forschern neue Einblicke in die komplexe Funktionsweise der Speicherung und des Abrufs von Erinnerungen. Auch für die potenzielle Anwendung dieses elektrischen Stimulationsverfahrens bei neuropsychiatrischen Störungen liefert die Studie Anhaltspunkte.

Die Erinnerungen an erlebte Dinge, das sogenannte episodische Gedächtnis, gelten als besonders anfällig für Verzerrungen und Fehler. Allerdings betreffen die Ungenauigkeiten nicht so sehr die Hauptaussagen oder das Hauptmotiv des Erlebten, sondern die Details. „Dies ist kein krankhafter Prozess, denn das Gedächtnis muss eine Balance zwischen dem ökonomischen Umgang mit seiner Speicherkapazität und der benötigten Genauigkeit der Erinnerungen finden“, erklärt Christian Plewnia.

Es war bereits bekannt, dass ein bestimmter Bereich der Großhirnrinde im linken Stirnlappen an der Steuerung dieser Vorgänge beteiligt ist. Die Nervenzellen im Gehirn verständigen sich untereinander über elektrische Reizleitung. Daher können Wissenschaftler durch schwache Stromreize, die von außen an der entsprechenden Stelle des Kopfes gegeben werden, die Erregbarkeit einzelner Hirnbereiche beeinflussen.

Die Tübinger Wissenschaftler unter der Leitung von Christian Plewnia teilten für ihre Experimente 96 Probanden in drei Gruppen ein: Alle wurden verkabelt, doch nur bei zwei der Gruppen wurde das Gehirn der Probanden tatsächlich gezielt mit schwachen Stromreizen verschiedener Polarität (anodal oder kathodal) stimuliert.

In zehn Minuten wurden ihnen 90 Bilder von alltäglichen Situationen und Objekten gezeigt, etwa von Bäumen, Häusern oder Bussen. Nach jedem Bild wurde eins von drei Symbolen präsentiert, das die Probanden instruierte, sich an das vorherige Bild zu erinnern, es zu vergessen oder ohne weitere Vorgabe.

So erreichten die Forscher, dass die Probanden die Bilder unterschiedlich intensiv abspeicherten. Für die Wiedererkennungsphase mischten sie die bekannten Bilder mit ähnlichen neuen Bildern, der gleiche Baum zu anderer Jahreszeit, die Häuserzeile aus anderer Perspektive oder der vormals gelbe Bus in Rot. Die Probanden sollten aus den nun 180 Bildern alle identifizieren, die sie bereits kannten – unabhängig von den früheren Anweisungen.

Bei der korrekten Wiedererkennung bereits bekannter Bilder unterschieden sich die Leistungen der drei Gruppen nicht. Nur ein Effekt der Anweisungen aus der ersten Testphase ergab sich: Alle identifizierten besser die alten Bilder, an die sie sich erinnern sollten. Deutliche Unterschiede zwischen den Gruppen ergaben sich jedoch bei der Rate der fälschlicherweise als bekannt bezeichneten Bilder:

Im Vergleich mit der Kontrollgruppe zeigten Probanden, die Stromreize mit kathodaler Polarität erhielten, eine deutlich geringere Fehlerrate und solche, die mit Stromreizen anodaler Polarität behandelt wurden, eine deutlich gesteigerte Fehlerrate. „Die Muster der korrekten und falschen Bild-wiedererkennung legen nahe, dass durch die Stromreize die Genauigkeit bei der falschen Wiedererkennung moduliert wird“, stellt Christian Plewnia fest.

„Wir wissen nun zum einen, dass die Stimulation polaritätsspezifisch wirkt und zum anderen, dass dieser Mechanismus vom Aktivitätszustand des Gehirns abhängig ist.“ Einfach sind die Zusammenhänge nicht: Die Wissenschaftler können nun jedoch eine genauere Vorstellung der Funktion des entscheidenden Hirnbereichs entwickeln und der Prozesse, wie dieser nützliche Erinnerungsspuren legt.

Originalpublikation:
Bastian Zwissler, Christoph Sperber, Sina Aigeldinger, Sebastian Schindler, Johanna Kissler und Christian Plewnia: Shaping Memory Accuracy by Left Prefrontal Transcranial Direct Current Stimu-lation. The Journal of Neuroscience, 34(11), Seiten 4022-4026, 12. März 2014.

Kontakt:
Prof. Dr. Christian Plewnia
Tübinger Universitätsklinik für Psychiatrie und Psychotherapie
Neurophysiologie und Interventionelle Neuropsychiatrie
Werner Reichardt Centrum für Integrative Neurowissenschaften
Telefon +49 7071 29-86121
christian.plewnia[at]med.uni-tuebingen.de

Dr. Karl Guido Rijkhoek | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-tuebingen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Hemmung von microRNA-29 schützt vor Herzfibrosen
20.11.2017 | Technische Universität München

nachricht Satellitenbilder zur Erfassung von Biodiversität nur bedingt tauglich
20.11.2017 | Helmholtz-Zentrum für Umweltforschung - UFZ

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

500 Kommunikatoren zu Gast in Braunschweig

20.11.2017 | Veranstaltungen

VDI-Expertenforum „Gefährdungsanalyse Trinkwasser"

20.11.2017 | Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Künstliche neuronale Netze: 5-Achs-Fräsbearbeitung lernt, sich selbst zu optimieren

20.11.2017 | Informationstechnologie

Tonmineral bewässert Erdmantel von innen

20.11.2017 | Geowissenschaften

Hemmung von microRNA-29 schützt vor Herzfibrosen

20.11.2017 | Biowissenschaften Chemie