Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Gedächtnis nimmt es nicht immer so genau

12.03.2014

Tübinger Wissenschaftler erforschen, wie sich das Erinnerungsvermögen für Bilddetails beeinflussen lässt

Erinnerung ist ein dynamischer und zuweilen geradezu kreativer Prozess: Was aus dem Gedächtnis abgerufen wird, kann sich deutlich von dem unterscheiden, was ursprünglich abgespeichert wurde.

Wissenschaftler der Universität Tübingen unter der Leitung von Professor Christian Plewnia von der Universitätsklinik für Psychiatrie und Psychotherapie haben zusammen mit Kollegen der Universität Bielefeld die Rolle eines bestimmten Bereichs der Großhirnrinde bei der Formung von Erinnerungen untersucht.

Dabei ließen sie freiwillige Probanden unter dem Einfluss schwacher, über den Schädel angelegter Stromreize in einem ausgeklügelten Test bekannte von erstmals präsentierten Bildern unterscheiden und maßen ihre Leistungsfähigkeit. Während sich die Rate der richtig als bereits bekannt eingeordneten Bilder kaum beeinflussen ließ, modulierte Strom mit unterschiedlicher Richtung (Polarität) die Rate der fälschlich als bekannt eingestuften Bilder deutlich.

Diese Ergebnisse geben den Forschern neue Einblicke in die komplexe Funktionsweise der Speicherung und des Abrufs von Erinnerungen. Auch für die potenzielle Anwendung dieses elektrischen Stimulationsverfahrens bei neuropsychiatrischen Störungen liefert die Studie Anhaltspunkte.

Die Erinnerungen an erlebte Dinge, das sogenannte episodische Gedächtnis, gelten als besonders anfällig für Verzerrungen und Fehler. Allerdings betreffen die Ungenauigkeiten nicht so sehr die Hauptaussagen oder das Hauptmotiv des Erlebten, sondern die Details. „Dies ist kein krankhafter Prozess, denn das Gedächtnis muss eine Balance zwischen dem ökonomischen Umgang mit seiner Speicherkapazität und der benötigten Genauigkeit der Erinnerungen finden“, erklärt Christian Plewnia.

Es war bereits bekannt, dass ein bestimmter Bereich der Großhirnrinde im linken Stirnlappen an der Steuerung dieser Vorgänge beteiligt ist. Die Nervenzellen im Gehirn verständigen sich untereinander über elektrische Reizleitung. Daher können Wissenschaftler durch schwache Stromreize, die von außen an der entsprechenden Stelle des Kopfes gegeben werden, die Erregbarkeit einzelner Hirnbereiche beeinflussen.

Die Tübinger Wissenschaftler unter der Leitung von Christian Plewnia teilten für ihre Experimente 96 Probanden in drei Gruppen ein: Alle wurden verkabelt, doch nur bei zwei der Gruppen wurde das Gehirn der Probanden tatsächlich gezielt mit schwachen Stromreizen verschiedener Polarität (anodal oder kathodal) stimuliert.

In zehn Minuten wurden ihnen 90 Bilder von alltäglichen Situationen und Objekten gezeigt, etwa von Bäumen, Häusern oder Bussen. Nach jedem Bild wurde eins von drei Symbolen präsentiert, das die Probanden instruierte, sich an das vorherige Bild zu erinnern, es zu vergessen oder ohne weitere Vorgabe.

So erreichten die Forscher, dass die Probanden die Bilder unterschiedlich intensiv abspeicherten. Für die Wiedererkennungsphase mischten sie die bekannten Bilder mit ähnlichen neuen Bildern, der gleiche Baum zu anderer Jahreszeit, die Häuserzeile aus anderer Perspektive oder der vormals gelbe Bus in Rot. Die Probanden sollten aus den nun 180 Bildern alle identifizieren, die sie bereits kannten – unabhängig von den früheren Anweisungen.

Bei der korrekten Wiedererkennung bereits bekannter Bilder unterschieden sich die Leistungen der drei Gruppen nicht. Nur ein Effekt der Anweisungen aus der ersten Testphase ergab sich: Alle identifizierten besser die alten Bilder, an die sie sich erinnern sollten. Deutliche Unterschiede zwischen den Gruppen ergaben sich jedoch bei der Rate der fälschlicherweise als bekannt bezeichneten Bilder:

Im Vergleich mit der Kontrollgruppe zeigten Probanden, die Stromreize mit kathodaler Polarität erhielten, eine deutlich geringere Fehlerrate und solche, die mit Stromreizen anodaler Polarität behandelt wurden, eine deutlich gesteigerte Fehlerrate. „Die Muster der korrekten und falschen Bild-wiedererkennung legen nahe, dass durch die Stromreize die Genauigkeit bei der falschen Wiedererkennung moduliert wird“, stellt Christian Plewnia fest.

„Wir wissen nun zum einen, dass die Stimulation polaritätsspezifisch wirkt und zum anderen, dass dieser Mechanismus vom Aktivitätszustand des Gehirns abhängig ist.“ Einfach sind die Zusammenhänge nicht: Die Wissenschaftler können nun jedoch eine genauere Vorstellung der Funktion des entscheidenden Hirnbereichs entwickeln und der Prozesse, wie dieser nützliche Erinnerungsspuren legt.

Originalpublikation:
Bastian Zwissler, Christoph Sperber, Sina Aigeldinger, Sebastian Schindler, Johanna Kissler und Christian Plewnia: Shaping Memory Accuracy by Left Prefrontal Transcranial Direct Current Stimu-lation. The Journal of Neuroscience, 34(11), Seiten 4022-4026, 12. März 2014.

Kontakt:
Prof. Dr. Christian Plewnia
Tübinger Universitätsklinik für Psychiatrie und Psychotherapie
Neurophysiologie und Interventionelle Neuropsychiatrie
Werner Reichardt Centrum für Integrative Neurowissenschaften
Telefon +49 7071 29-86121
christian.plewnia[at]med.uni-tuebingen.de

Dr. Karl Guido Rijkhoek | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-tuebingen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit