Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Floß auf der Zellmembran

21.04.2015

Einem lange umstrittenen Rätsel der Zellmembran kam man an der TU Wien auf die Spur: Die molekularen Flöße, sogenannte „Lipid Rafts“, die angeblich über die Membran der Zelle wandern, gibt es nicht.

Wie ein Floß, das durch das Wasser gleitet, sollen sich winzige Gebilde aus Fettmolekülen und Proteinen angeblich ihren Weg durch unsere Zellmembranen bahnen. Diese „Raft-Hypothese“ galt seit Jahren als weitgehend akzeptiert. Untersuchungen an der TU Wien zeigen nun allerdings: In lebenden Zellen gibt es die lange gesuchten „Lipidflöße“ gar nicht. Dieses Ergebnis wurde nun im Fachjournal „Nature Communications“ publiziert.


Eva Sevcsik im Biolabor der TU Wien

TU Wien

Die Zellmembran ist im Fluss

„Die Zellmembran, die äußere Hülle der Zelle, darf man sich nicht wie eine statische, feste Oberfläche vorstellen“, sagt Eva Sevcsik von der Biophysik-Gruppe am Institut für Angewandte Physik der TU Wien. „Die Membran ist sehr fluide, ihre Moleküle, also Lipide und Proteine, bewegen sich ständig.“

Die Proteine können bestimmte Funktionen haben: sie dienen etwa als Andockstationen für Stoffe von außen, oder als Kanäle, die Moleküle ins Innere der Zelle leiten. Weil verschiedene Proteine einander oft beeinflussen, lag die Vermutung nahe, dass sie sich auch gemeinsam durch die Membran bewegen – wie ein Nano-Floß, das über die Oberfläche der Zelle gleitet.

Diese Hypothese gewann unter Zellbiologen zunehmend an Popularität, und die „Rafts“ werden mittlerweile mit einer Vielzahl an zellulären Prozessen in Verbindung gebracht. Das Problem dabei: Indizien für diese Hypothese gibt es nur aus Studien an Modellsystemen oder toten Zellen. Direkt beobachten ließen sich diese Flöße in einer lebenden Zelle bisher nie.

Als Grund dafür wurde angenommen, dass die Flöße zu klein und kurzlebig sind, sodass sie mit konventionellen Mikroskopietechniken nicht detektiert werden können. In den Biophysik-Labors der TU Wien ging man diesem Rätsel nun mit einer Kombination an modernsten Techniken auf den Grund: „Einerseits verwenden wir hochsensitive Mikroskopietechniken, mit denen wir einzelne Moleküle beobachten. Andererseits können wir mithilfe von mikro- und nanostrukturierten Oberflächen die Zellmembran von außen beeinflussen“, erklärt Eva Sevcsik. „Daher waren wir in der Lage, die Organisation der Zellmembran mit einer komplett neuen Herangehensweise zu erforschen“.

Molekulares Lego

Dabei werden Oberflächen mit einer speziellen Mikrostruktur ausgestattet, auf der man menschliche Zellen züchten kann, die auf diese Struktur reagieren. „Das ist wie molekulares Lego“, sagt Eva Sevcsik. „Wir platzieren auf der mikrostrukturierten Oberfläche molekulare Bausteine, die genau zu bestimmten Proteinen in der Zellmembran passen.“ Diese Proteine verteilen sich daher nicht mehr über die gesamte Membran, sie reichern sich genau entlang der vorgegebenen Oberflächenstrukturen an.

Man kann sich also ein Protein aussuchen, das als wichtiger Bestandteil der gesuchten Nano-Flöße gilt, es an ganz bestimmen Orten festhalten, und beobachten, wie andere Proteine und Lipide darauf reagieren.

Sichtbar gemacht werden diese mit speziellen Mikroskopie-Techniken: Man platziert in ganz geringen Mengen fluoreszierende Marker an Proteine oder Lipide, und filmt die einzelnen Moleküle dabei, wie sie sich in der Membran bewegen. „Wenn wir die Bewegung einzelner Proteine untersuchen, können wir bestimmen, ob wir es mit Lipidflößen zu tun haben oder nicht“, sagt Eva Sevcsik.

„So ein auf unseren Strukturen verankertes Floß würde wandernden Proteinen nämlich mehr Widerstand entgegensetzen als die Umgebung – die Wanderung wäre dort langsamer. In unseren Messungen ist diese Diffusionsbewegung aber überall gleich.“

Schlechte Karten für die Raft-Hypothese

Dass sich die Raft-Hypothese so lange halten konnte, obwohl es keine stichhaltigen Beweise für sie gab, ist für Eva Sevcsik gar nicht besonders überraschend: „Es ist verlockend, seine Ergebnisse im Kontext einer anerkannten Hypothese zu interpretieren – ein generelles Problem in der Wissenschaft“, meint sie. „Wir hatten uns zum Ziel gesetzt, die Raft-Hypothese ganz unvoreingenommen zu prüfen.“

Die Raft-Hypothese, wie man sie bisher kannte und lehrte, scheint ins Wanken zu kommen. Doch wenn es keine floßartig treibenden Nano-Strukturen in der Zellmembran gibt, gibt es dann andere Mechanismen, die für Ordnung zwischen den Proteinen und Lipiden sorgen? „Möglicherweise spielt das Aktin-Cytoskelett dabei eine wichtigere Rolle als man bisher dachte“, vermutet Sevcsik. Es liegt direkt unter der Zellmembran und verleiht der Zelle Stabilität. Seine Funktion will Sevcsik nun mit biophysikalischen Methoden genauer unter die Lupe nehmen.

Rückfragehinweis:
Dr. Eva Sevcsik
Institut für Angewandte Physik
Technische Universität Wien
Lehargasse 4, 1060 Wien
T: +43-1-58801-13486
eva.sevcsik@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Proteine entdecken, zählen, katalogisieren
28.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chemisches Profil von Ameisen passt sich bei Selektionsdruck rasch an
28.06.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive