Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Darmzellen besitzen Abwehrmechanismus gegen Bakterien

27.05.2011
Molekularer Mechanismus der selektiven Autophagie entschlüsselt

Salmonellen sind im Tierreich weit verbreitet. Dass wir nicht häufiger an schweren Magen-Darminfektionen erkranken, verdanken wir einem körpereigenen Abwehrmechanismus, der eindringende Bakterien verdaut. Daher wird ein gesunder Mensch in der Regel auch erst krank, wenn er mehr als 100.000 Bakterien über kontaminierte Nahrungsmittel wie Eier oder Fleisch aufgenommen hat.

Wie die Körperzellen Salmonellen erkennen und unschädlich machen, hat jetzt eine internationale Forschergruppe unter Leitung von Prof. Ivan Dikic an der Goethe-Universität herausgefunden. Das Verständnis dieses Vorgangs auf der molekularen Ebene ist entscheidend, um neue Angriffspunkte für die Behandlung zu finden. Denn vor allem in den tropischen und subtropischen Ländern, wo verschiedene Subspezies der Salmonellen weit verbreitet sind, nimmt die Resistenz gegen Antibiotika rasch zu. Unter den Opfern sind vor allem Kinder.

Eine Infektion mit Salmonellen beginnt damit, dass die Bakterien in die Epithelzellen der Darmschleimhaut eindringen. Damit sie sich dort nicht weiter vermehren, werden spezielle Zell-Organellen, die Autophagosomen, aktiviert. Sie umschließen die Eindringlinge und verschmelzen anschließend mit anderen Organellen, den Lysosomen. Diese enthalten spezielle Verdauungsenzyme. So werden die Bakterien in ihre Bestandteile zerlegt. Aber wie erkennen die Autophagosomen die Salmonellen? Diesen Mechanismus hat die Forschergruppe um Prof. Ivan Dikic am Institut für Biochemie II entschlüsselt.

Wie die Forscher in der aktuellen Ausgabe der Fachzeitschrift „Science“ berichten, werden die Salmonellen zunächst mit dem Molekül Ubiquitin als „Abfallstoffe“ markiert. Damit die Autophagosomen aktiv werden können, müssen die markierten Bakterien an das Molekül LC3 an der Membran der Autophagosomen binden. Eine Schlüsselrolle spielt dabei das Protein Optineurin. Es verknüpft die markierten Salmonellen mit dem LC3 der Autophagosomen und löst somit eine selektive Autophagie aus.

Optineurin wird allerdings nur dann als Bindeglied aktiv, wenn es zuvor durch ein Enzym chemisch modifiziert wurde (es wird durch die Protein Kinase TBK1 phosphoryliert). „Wir vermuten, dass die Phosphorylierung als ein regulierender Schalter für die selektive Autophagie wirkt. Der gleiche Mechanismus könnte auch von Bedeutung sein, wenn an Stelle von Bakterien Protein-Aggregate oder beschädigte Mitochondrien abgebaut werden sollen ”, erläutert Prof. Ivan Dikic die Bedeutung des Ergebnisses. So sind gestörte Autophagie-Prozesse unter anderem an der Entstehung von Krebs und neurodegenerativen Erkrankungen beteiligt.

Für die Infektiologie sind diese Ergebnisse vor allem deshalb von Bedeutung, weil die Zahl der Magen-Darm-Erkrankungen durch enterische Salmonellen in Deutschland seit Mitte der 1980er Jahren stark zugenommen hat. Waren es 1985 noch circa 30.000 Fälle, zählten die Gesundheitsämter 2005 schon circa 52.000 Fälle. Weltweit erkranken derzeit jährlich 94 Millionen Menschen an akuter Gastroenteritis, von denen 155 000 sterben. Von Typhus, der ebenfalls von Salmonellen ausgelöst wird, sind jährlich 16 Millionen Menschen weltweit betroffen; 200 000 sterben daran (insbesondere Kinder). Aufgrund einer rasch zunehmenden Resistenz der Bakterien gegen Antibiotika sind die therapeutischen Möglichkeiten begrenzt. So ist das früher eingesetzte Breitbandantibiotikum Chloramphenicol heute unwirksam und auch gegen heute oft verwendete Fluoroquinolon-Antibiotika werden die Bakterien zunehmend resistent. „Neue Behandlungswege für Infektionskrankheiten müssen dringend gefunden werden. Ein besseres Verständnis der körpereigenen Abwehrmechanismen durch Autophagie könnte dabei helfen“, so Koautor Prof. Dirk Bumann vom Biozentrum der Universität Basel.

Philipp Wild et al: Phosphorylation of the Autophagy Receptor Optineurin restricts Salmonella growth, Science 26th May 2011 advanced online publication (Science DOI: 10.1126/science.1205405)

Informationen: Prof. Ivan Dikic, Institut für Biochemie II, Campus Niederrad, Tel: (069) 6301-5652, ivan.dikic@biochem2.de.

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn drittmittelstärksten und größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Parallel dazu erhält die Universität auch baulich ein neues Gesicht. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht ein neuer Campus, der ästhetische und funktionale Maßstäbe setzt. Die „Science City“ auf dem Riedberg vereint die naturwissenschaftlichen Fachbereiche in unmittelbarer Nachbarschaft zu zwei Max-Planck-Instituten. Mit über 55 Stiftungs- und Stiftungsgastprofes¬suren nimmt die Goethe-Universität laut Stifterverband eine Führungsrolle ein.

Herausgeber: Der Präsident der Goethe-Universität Frankfurt am Main. Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation. Abteilung Marketing und Kommunikation, Senckenberganlage 31, 60325 Frankfurt am Main, Tel.: (069) 798-29228, Fax: (069) 798-28530, hardy@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

nachricht Nervenkrankheit ALS: Mehr als nur ein Motor-Problem im Gehirn?
16.01.2017 | Leibniz-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltweit erste Solarstraße in Frankreich eingeweiht

16.01.2017 | Energie und Elektrotechnik

Proteinforschung: Der Computer als Mikroskop

16.01.2017 | Biowissenschaften Chemie

Vermeintlich junger Stern entpuppt sich als galaktischer Greis

16.01.2017 | Physik Astronomie